在△ABC中,sin2A≤sin2B+sin2C-sinBsinC,則A的取值范圍是( 。
A、(0,
π
6
]
B、(0,
π
3
]
C、[
π
6
,π)
D、[
π
3
,π)
考點(diǎn):余弦定理,正弦定理
專(zhuān)題:計(jì)算題,解三角形
分析:利用正弦定理化簡(jiǎn)已知的不等式,再利用余弦定理表示出cosA,將得出的不等式變形后代入表示出的cosA中,得出cosA的范圍,由A為三角形的內(nèi)角,根據(jù)余弦函數(shù)的圖象與性質(zhì)即可求出A的取值范圍.
解答: 解:利用正弦定理化簡(jiǎn)sin2A≤sin2B+sin2C-sinBsinC得:a2≤b2+c2-bc,
變形得:b2+c2-a2≥bc,
∴cosA=
b2+c2-a2
2bc
bc
2bc
=
1
2

又∵A為三角形的內(nèi)角,
∴A的取值范圍是(0,
π
3
].
故選:B.
點(diǎn)評(píng):此題考查了正弦、余弦定理,特殊角的三角函數(shù)值,以及余弦函數(shù)的圖象與性質(zhì),熟練掌握正弦、余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)都不在平面α內(nèi),它的三邊AB,BC,AC延長(zhǎng)后分別交平面α于點(diǎn)P,Q,R.求證:P,Q,R三點(diǎn)在同一條直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列四個(gè)命題:
①過(guò)直線(xiàn)外一點(diǎn)可作無(wú)數(shù)條直線(xiàn)與已知直線(xiàn)平行;
②如果一條直線(xiàn)不在這個(gè)平面內(nèi),那么這條直線(xiàn)就與這個(gè)平面平行;
③垂直于同一直線(xiàn)的兩條直線(xiàn)可能相交、可能平行也可能異面;
④若兩個(gè)平面分別經(jīng)過(guò)兩條垂直直線(xiàn),則這兩個(gè)平面互相垂直.
其中,說(shuō)法正確的有
 
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C,所對(duì)的邊分別為a,b,c,且a=4,cosB=
4
5

(Ⅰ)若b=3,求sinA的值;
(Ⅱ)若△ABC的面積為12,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(2,2)引橢圓x2+4y2=4的切線(xiàn),則切線(xiàn)方程為(  )
A、3x-8y+10=0
B、5x+8y-2=0
C、3x-8y+10=0或x-2=0
D、5x+8y-2=0或3x+10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a2-b2=bc,sinC=2sinB,則角A為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,若A=60°,a=
3
,b+c=3,則△ABC的面積為(  )
A、
3
4
B、
3
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,且Sn+an=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足b1=a1,bn=
3bn-1
bn-1+3
,n≥2.求數(shù)列{bn}的通項(xiàng)公式;
(3)(理)設(shè)cn=
an
bn
,求數(shù)列{cn}的前n和Tn
(文)設(shè)cn=
n
an
,求數(shù)列{cn}的前n和En

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a5=4,a11=1,則a8=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案