16.設(shè)函數(shù)f(x)=x3-$\frac{9}{2}$x2+6x+m.
(Ⅰ)對于x∈R,f′(x)≥a恒成立,求a的最大值;
(Ⅱ)若方程f(x)=0有且僅有一個(gè)實(shí)根,求m的取值范圍;
(Ⅲ)若g(x)=mx-6x2-2f(x)在(1,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

分析 (1)求出f(x)的導(dǎo)數(shù),得到3x2-9x+(6-a)≥0恒成立,根據(jù)判別式△≤0,求出a的范圍即可;
(2)求出f(x)的極大值和極小值,從而求出m的范圍即可;
(3)求出g(x)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,求出函數(shù)的g′(x)的最大值,從而求出m的范圍即可.

解答 解:(1)f′(x)=3x2-9x+6,
x∈R,f′(x)≥a恒成立,即3x2-9x+(6-a)≥0恒成立,
∴△=81-12(6-a)≤0,解得:a≤-$\frac{3}{4}$,
∴a的最大值是-$\frac{3}{4}$;
(2)由f′(x)=3(x-1)(x-2),
令f′(x)>0,解得:x>2或x<1,令f′(x)<0,解得:1<x<2,
∴f(x)極大值=f(1)=$\frac{5}{2}$+m,f(x)極小值=f(2)=2+m,
故f(2)>0或f(1)<0時(shí),方程f(x)=0僅有1個(gè)實(shí)數(shù)根,
∴m的范圍是(-∞,-$\frac{5}{2}$)∪(-2,+∞);
(3)∵g(x)=-2x3+3x2+(m-12)x-2m,
∴g′(x)=-6${(x-\frac{1}{2})}^{2}$+(m-$\frac{21}{2}$),
當(dāng)x∈[1,+∞)時(shí),g′(x)的最大值是g′(1)=m-12,
令g′(1)>0,解得:m>12,
∴m的范圍是(12,+∞).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)集合U={1,2,3,4,5},A={2,4},則∁uA={1,3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>0時(shí),$1-\frac{1}{x}≤lnx≤x-1$;
(3)當(dāng)x∈N*時(shí),證明$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+(a2-1)x+b(a,b∈R),其圖象在點(diǎn)(1,f(1))處的切線方程為x+y-3=0.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)$y=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x$的圖象與函數(shù)y=k的圖象恰有三個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍為( 。
A.$[{-\frac{10}{3},\frac{7}{6}}]$B.$({-\frac{10}{3},\frac{7}{6}})$C.$[{\frac{7}{6},+∞})$D.$({-\frac{11}{6},\frac{7}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x),其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則y=f(x)(  )
A.在(-∞,0)上為減函數(shù)B.在x=1處取極小值
C.在x=2處取極大值D.在(4,+∞)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)在(-∞,1)上單調(diào)遞增B.函數(shù)f(x)在(-∞,1)上單調(diào)遞減
C.函數(shù)f(x)在(-2,2)上單調(diào)遞增D.函數(shù)f(x)在(-2,2)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)是定義在R上的函數(shù),其中f(x)的導(dǎo)函數(shù)f′(x)滿足f′(x)<f(x)對于x∈R恒成立,則( 。
A.f(2)>e2f(0),f(2016)>e2016f(0)B.f(2)<e2f(0),f(2016)>e2016f(0)
C.f(2)<e2f(0),f(2016)<e2016f(0)D.f(2)>e2f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=mlnx+\frac{3}{2}{x^2}-4x$.
(1)若曲線y=f(x)在x=1處的切線與y軸垂直,求函數(shù)f(x)的極值;
(2)設(shè)g(x)=x3-4,若h(x)=f(x)-g(x)在(1,+∞)上單調(diào)遞減,求實(shí)數(shù)m的取值范圍,并分析方程$2lnx+\frac{3}{2}{x^2}+4={x^3}+4x$在(1,+∞)上實(shí)根的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案