設(shè)函數(shù)f(x)=sinxcosx-cos(x+π)cosx(x∈R),
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=f(x)的圖象按=(,)平移后得到函數(shù)y=g(x)的圖象,求y=g(x)在[0,]上的最大值。

解:(Ⅰ),
∴f(x)的最小正周期為T==π;
(Ⅱ)依題意得,
當(dāng)x∈[0,]時(shí),,
,

∴g(x)在[0,]的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+tanx,x∈(-
π
2
,
π
2
)
,項(xiàng)數(shù)為25的等差數(shù)列an且公差d≠0,若f(a1)+f(a2)+f(a3)+…+f(a25)=0,則i=
 
有f(ai)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx•cosx+
3
cos2x

(1)求f(x)的最小正周期;
(2)已知f(α)=
1
3
+
3
2
,α∈(
π
12
,
π
3
)
,求cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx-
3
cosx+x+1

(Ⅰ)求函數(shù)f(x)在x=0處的切線方程;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,f′(B)=3且a+c=2,求邊長b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•薊縣二模)設(shè)函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R

(Ⅰ)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]
上的值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=
3
2
且a=
3
2
b,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)設(shè)函數(shù)f(x)=|sinx|+cos2x,x∈[-
π
2
,
π
2
]
,則函數(shù)f(x)的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案