(本題13分)已知橢圓的方程是,點分別是橢圓的長軸的左、右端點,
左焦點坐標(biāo)為,且過點。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知是橢圓的右焦點,以為直徑的圓記為圓,試問:過點能否引圓的切線,若能,求出這條切線與軸及圓的弦所對的劣弧圍成的圖形的面積;若不能,說明理由。
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省四市九校高三上學(xué)期12月月考文科數(shù)學(xué) 題型:解答題
(本題滿分13分)已知橢圓的離心率,短軸長為
(Ⅰ)求橢圓方程;
(Ⅱ)若橢圓與軸正半軸、軸正半軸的交點分別為、,經(jīng)過點且斜率k的直線與橢圓交于不同的兩點、,是否存在常數(shù),使得向量共線?如果存在,求的值;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省高三第一次學(xué)情摸底考試數(shù)學(xué)卷 題型:解答題
(本題滿分13 分)
已知橢圓的右焦點F 與拋物線y2 = 4x 的焦點重合,短軸長為2.橢圓的右準(zhǔn)線l與x軸交于E,過右焦點F 的直線與橢圓相交于A、B 兩點,點C 在右準(zhǔn)線l 上,BC//x 軸.
(1)求橢圓的標(biāo)準(zhǔn)方程,并指出其離心率;
(2)求證:線段EF被直線AC 平分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本題滿分13分)
已知橢圓的左右焦點分別為,.在橢圓中有一內(nèi)接三角形,其頂點的坐標(biāo),所在直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)的面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本題滿分13分)
已知橢圓的左右焦點分別為,.在橢圓中有一內(nèi)接三角形,其頂點的坐標(biāo),所在直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)的面積最大時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com