(本題滿分13 分)

    已知橢圓的右焦點F 與拋物線y2 = 4x 的焦點重合,短軸長為2.橢圓的右準線l與x軸交于E,過右焦點F 的直線與橢圓相交于A、B 兩點,點C 在右準線l 上,BC//x 軸.

   (1)求橢圓的標準方程,并指出其離心率;

   (2)求證:線段EF被直線AC 平分.

 

【答案】

(1)

        (2) 線段EF被直線AC平分。

【解析】解:(1)由題意,可設橢圓的標準方程為……1分

    的焦點為F(1,0)

   

    ……………………3分

    所以,橢圓的標準方程為

    其離心率為 ……………………5分

   (2)證明:∵橢圓的右準線1的方程為:x=2,

    ∴點E的坐標為(2,0)設EF的中點為M,則

    若AB垂直于x軸,則A(1,y1),B(1,-y1),C(2,-y1

    ∴AC的中點為

    ∴線段EF的中點與AC的中點重合,

    ∴線段EF被直線AC平分,…………………………6分

    若AB不垂直于x軸,則可設直線AB的方程為

   

    則…………………………7分

    把

 ………………8分

則有………………9分

……………………10分

∴A、M、C三點共線,即AC過EF的中點M,

∴線段EF被直線AC平分。………………………………13分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆天津市高一第一次月考數(shù)學試卷(解析版) 題型:解答題

(本題滿分13分)

已知集合,,.

(1) 求;   (2) 若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆浙江省寧波萬里國際學校高三上期中理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分13分)的三個內角依次成等差數(shù)列.

   (Ⅰ)若,試判斷的形狀;

   (Ⅱ)若為鈍角三角形,且,求

的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年北京市朝陽區(qū)高三上學期期末考試理科數(shù)學 題型:解答題

(本題滿分13分)

在銳角中,,,分別為內角,所對的邊,且滿足

(Ⅰ)求角的大;

(Ⅱ)若,且,,求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:重慶市09-10學年高二下學期5月月考(數(shù)學文) 題型:解答題

(本題滿分13分)展開式中,求:

(1)第6項;   (2) 第3項的系數(shù);   (3)常數(shù)項。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省龍巖市高三上學期期末考試數(shù)學理卷(一級學校) 題型:解答題

(本題滿分13分)

如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FEABAD,AFABBCFEAD.

(Ⅰ)求異面直線BFDE所成角的余弦值;

(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案