”a<0”是”函數(shù)f(x)=|x(x-2a)|在區(qū)間(0,+∞)上單調(diào)遞增”的( 。
A、必要不充分條件
B、充要條件
C、既不充分也不必要條件
D、充分不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:a<0,則f(x)=(x-a)2-a2在區(qū)間(0,+∞)上單調(diào)遞增;反之不一定成立,例如a=0.
解答: 解:f(x)=
(x-a)2-a2,x≥2a
-(x-a)2+a2,x<2a
,
若a<0,則f(x)=(x-a)2-a2在區(qū)間(0,+∞)上單調(diào)遞增;
反之不一定成立,例如a=0.
∴a<0”是”函數(shù)f(x)=|x(x-2a)|在區(qū)間(0,+∞)上單調(diào)遞增”的充分不必要條件.
故選:D.
點評:本題考查了二次函數(shù)的單調(diào)性、簡易邏輯、分類討論的思想方法,考查了推理能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,-
5
5
)與
b
=(1,cosθ)
(Ⅰ)若
a
b
互相垂直,求tanθ的值
(Ⅱ)若|
a
|=|
b
|,求sin(
π
2
+2θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=
3-2x-x2
的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列圖形是函數(shù)y=
x2,x<0
x-1,x≥0
,的圖象的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線L過拋物線C:y2=2px(p>0)的焦點F且與C相交于A、B兩點,且AB的中點M的坐標為(3,2),則拋物線C的方程為( 。
A、y2=2x或y2=4x
B、y2=4x或y2=8x
C、y2=6x或y2=8x
D、y2=2x或y2=8x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x+1)=x2-2x,則f(1)的值為.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=asinx+bcosx+5(ab≠0)且f(9)=27,則f(-9)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果集合A={x|ax2+2x+1=0}中只有一個元素,則a的值是(  )
A、0B、0 或1
C、1D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A是函數(shù)y=lg[-x2+ax+(1-a)]的定義域,B是不等式
3x
x+1
≤1
的解集.
(1)若集合A中恰有兩個正整數(shù)解,求實數(shù)a的取值范圍;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案