下列圖形是函數(shù)y=
x2,x<0
x-1,x≥0
,的圖象的是
 

考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:在函數(shù)的每一段上令x取特殊值來選擇合適的圖象:分別令x<0、x=0、x>0三種情況即可.
解答: 解:∵x≥0時,f(x)=x-1
∴當(dāng)x=0時,函數(shù)值f(0)=0-1=-1,故排除①②,
又∵x<0時,f(x)=x2>0,排除④,
綜上圖象只能是③,
故答案為:③
點評:解選擇題時,“特值驗證”是最快、最有效的方法,本題屬于低檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(ax2+2x+3),a∈R.
(1)若f(x)的定義域為R,求實數(shù)a的取值范圍;
(2)若f(x)的值域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={y|y=log2x,x>1},B={-2,-1,1,2}則下列結(jié)論正確的是(  )
A、A∩B={-2,-1}
B、(∁RA)∪B=(-∞,0)
C、A∪B=(0,+∞)
D、(∁RA)∩B={-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
log2x,x>0
cos2πx,x≤0
,則f(
1
2
)+f(-
1
2
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,AB∥DC,AB⊥BC,且AB=4,BC=CD=2,點P為線段AB上的一動點,過點P作直線l⊥AB,令A(yù)P=x,記梯形位于直線l左側(cè)部分的面積S=f(x).
(1)求函數(shù)f(x)的解析式;
(2)作出函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln
1+x
1-x
的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

”a<0”是”函數(shù)f(x)=|x(x-2a)|在區(qū)間(0,+∞)上單調(diào)遞增”的(  )
A、必要不充分條件
B、充要條件
C、既不充分也不必要條件
D、充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C:x2+y2=1,點A(-2,0)和點B(2,a),從點A觀察點B,要使視線不被⊙C擋住,則實數(shù)a 的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,
BD
=2
DC
,
DO
=
OA
,設(shè)x
OA
+y
OB
+
OC
=
0
,則x+y=
 

查看答案和解析>>

同步練習(xí)冊答案