【題目】命題“x>0,不等式x﹣1≥lnx成立”的否定為( )
A.x0>0,不等式x0﹣1≥lnx0成立
B.x0>0,不等式x0﹣1<lnx0成立
C.x≤0,不等式x﹣1≥lnx成立
D.x>0,不等式x﹣1<lnx成立
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=log0.60.5,b=ln0.5,c=0.60.5 . 則( )
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}、{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a37+b37等于( )
A.0
B.37
C.100
D.﹣37
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x>0,x﹣lnx>0,則¬p為( )
A.x>0,x﹣lnx≤0
B.x>0,x﹣lnx<0
C.x0>0,x0﹣lnx0>0
D.x0>0,x0﹣lnx0≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題“若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一個是偶數(shù)”時,下列假設(shè)中正確的是( )
A.假設(shè)a,b,c不都是偶數(shù)
B.假設(shè)a,b,c都不是偶數(shù)
C.假設(shè)a,b,c至多有一個是偶數(shù)
D.假設(shè)a,b,c至多有兩個是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)有甲、乙兩個圖書館,對其借書、還書的等待時間進(jìn)行調(diào)查,得到下表: 甲圖書館
借(還)書等待時間T1(分鐘) | 1 | 2 | 3 | 4 | 5 |
頻數(shù) | 1500 | 1000 | 500 | 500 | 1500 |
乙圖書館
借(還)書等待時間T2(分鐘) | 1 | 2 | 3 | 4 | 5 |
頻數(shù) | 1000 | 500 | 2000 | 1250 | 250 |
以表中等待時間的學(xué)生人數(shù)的頻率為概率.
(1)分別求在甲、乙兩圖書館借書的平均等待時間;
(2)學(xué)校規(guī)定借書、還書必須在同一圖書館,某學(xué)生需要借一本數(shù)學(xué)參考書,并希望借、還書的等待時間之和不超過4分鐘,在哪個圖書館借、還書更能滿足他的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U={1,2,3,4,5,6,7,8},AU,BU,且滿足A∩B={3},(UB)∩A={1,2},(UA)∩B={4,5},則U(A∪B)=( )
A.{6,7,8}
B.{7,8}
C.{5,7,8}
D.{5,6,7,8}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本數(shù)據(jù)x1 , x2 , …,x10的方差為8,則數(shù)據(jù)2x1﹣1,2x2﹣1,…,2x10﹣1的方差為( )
A.31
B.15
C.32
D.16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com