知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時的x的集合;
(2)函數(shù)的單調(diào)減區(qū)間;
(3)此函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過怎樣變換而得到.
【答案】分析:(1)利用兩角和公式和二倍角公式對函數(shù)解析式化簡整理,利用正弦函數(shù)的性質(zhì)求得函數(shù)的最小值以及x的值.
(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)減區(qū)間.
(3)先由的圖象向左平移個單位,再向上平移2個單位而得到.y=的圖象.
解答:解:由y=sin2x+sin2x+3cos2x=1+sin2x+2cos2x=1+sin2x+(1+cos2x)=
(1)當時,y最小=2-,此時,由2x+,得x=kπ-,
(2)由2kπ+,得減區(qū)間為
(3)其圖象可由y=sin2x的圖象向左平移個單位,再向上平移2個單位而得到.
點評:本題主要考查了三角函數(shù)的最值,兩角和公式和二倍角公式的化簡求值.考查了考生基礎知識和基本能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin2x,則( 。
A、有最小正周期為2π
B、有最小正周期為π
C、有最小正周期為
π
2
D、無最小正周期

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin2x-
3
cos2x
,
(1)將函數(shù)化成正弦型函數(shù)的形式;
(2)指出函數(shù)的周期;
(3)指出當x取何值時,函數(shù)取最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin2x+2sinxcosx+3cos2x,x∈R,那么(Ⅰ)函數(shù)的最小正周期是什么?(Ⅱ)函數(shù)在什么區(qū)間上是增函數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin2x+asinx-acosx-
1
2
a-1 (-
π
4
≤x≤
π
2
)
的最大值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin2x+
1
2
sinx+1(x∈R)
,若當y取得最大值時x=α,當y取得最小值時x=β,且α,β∈[-
π
2
,
π
2
]
,則sin(α-β)=
15
4
15
4

查看答案和解析>>

同步練習冊答案