A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{2}$或-1 | D. | -$\frac{\sqrt{3}}{2}$或0 |
分析 由已知及余弦定理可求a,進而利用余弦定理可求cosB=$\frac{\sqrt{3}}{2}$,結合B是三角形的一個內角,可得B=30°,利用誘導公式即可計算得解.
解答 解:∵b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+3-2×1×\sqrt{3}×\frac{\sqrt{3}}{2}}$=1,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{1+3-1}{2×1×\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
∴由于B是三角形的一個內角,可得:B=30°,
∴cos5B=cos150°=cos(π-30°)=-cos30°=-cosB=-$\frac{\sqrt{3}}{2}$.
故選:A.
點評 本題主要考查了余弦定理,誘導公式在解三角形中的應用,考查了轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,+∞) | B. | (1,+∞) | C. | (e,+∞) | D. | $(\frac{e}{3},+∞)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(b)<f(a)<f(c) | B. | f(c)<f(b)<f(a) | C. | f(c)<f(a)<f(b) | D. | f(b)<f(c)<f(a) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com