20.設(shè)函數(shù)f'(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且3f(x)=f'(x)-3,則6f(x)>f'(x)的解集為(  )
A.(0,+∞)B.(1,+∞)C.(e,+∞)D.$(\frac{e}{3},+∞)$

分析 容易求出f′(0)=6,結(jié)合條件便可得出函數(shù)f(x)的解析式,進(jìn)而求出導(dǎo)函數(shù),代入6f(x)>f′(x),根據(jù)指數(shù)函數(shù)的單調(diào)性便可解出原不等式.

解答 解:根據(jù)條件,f(0)=1,且3f(x)=f'(x)-3,
可得3f(0)=3=f′(0)-3;
∴f′(0)=6,
由于ex的導(dǎo)數(shù)為ex,且由復(fù)合函數(shù)的導(dǎo)數(shù)法則,
可設(shè)f(x)=menx+b,可得3menx+3b=mnenx-3,
顯然3b=-3,即b=-1;又3m=mn,即n=3,
由f(0)=m-1=1,即m=2,
∴f(x)=2e3x-1,f′(x)=6e3x;
∴由6f(x)>f′(x)得:6(2e3x-1)>6e3x,
整理得,e3x>1,
∴3x>0,
∴x>0.
∴原不等式的解集為(0,+∞).
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)函數(shù)的概念,基本初等函數(shù)和復(fù)合函數(shù)的求導(dǎo),指數(shù)函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)點(diǎn)A(4,$\frac{3π}{2}$)引圓ρ=4sinθ的一條切線,則切線長(zhǎng)為( 。
A.3$\sqrt{3}$B.6$\sqrt{3}$C.2$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.化簡(jiǎn)下列各式:
(1)3a(a+1)-(3+a)(3-a)-(2a-1)2
(2)($\frac{{x}^{2}-2x+4}{x-1}$+2-x)÷$\frac{{x}^{2}+4x+4}{1-x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,橢圓C的一個(gè)短軸端點(diǎn)與拋物線x2=4y的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)橢圓C右焦點(diǎn)的直線l交橢圓于A,B兩點(diǎn),若以AB為直徑的圓過(guò)原點(diǎn),求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)x∈R,均有f(x)>f′(x),則有(  )
A.e2016f(-2016)<f(0),f(2016)<e2016f(0)B.e2016f(-2016)>f(0),f(2016)>e2016f(0)
C.e2016f(-2016)<f(0),f(2016)>e2016f(0)D.e2016f(-2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=|x-1|-2|x+1|的最大值為m
(I)求m的值;
( II)若a,b,c∈(0,+∞)),且a2+3b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,a,b,c為角A,B,C的對(duì)邊,若b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,則cos5B=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{\sqrt{3}}{2}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b,c滿足4a=9,b=log${\;}_{\frac{1}{3}}$5,c3=$\frac{3}{5}$,則(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an},其前n項(xiàng)和為Sn
(1)若{an}是公差為d(d>0)的等差數(shù)列,且{$\sqrt{{S}_{n}+n}$}也為公差為d的等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}對(duì)任意m,n∈N*,且m≠n,都有$\frac{2{S}_{m+n}}{m+n}$=am+an+$\frac{{a}_{m}-{a}_{n}}{m-n}$,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案