【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設,現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點M,N分別在邊AB,AD上. (Ⅰ)當點M,N分別是邊AB,AD的中點時,求∠MCN的余弦值;

(Ⅱ)由于村建規(guī)劃及保護生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:(Ⅰ)設∠DCN=∠BCM=θ,當點M,N分別是邊AB,AD的中點時,在直角三角形中可得sinθ= ,cosθ= ,然后利用cos∠MCN=cos( ﹣2θ)求解;

(Ⅱ)設∠BCM=α,∠DCN=β,探究α+β是否為定值即可。設AM=x,AN=y,則BM=1﹣x,DN=1﹣y,可得tanα=1﹣x,tanβ=1﹣y,于是得tan(α+β)= ,再由

△AMN的周長為2千米得xy=2(x+y)﹣2,代入后可得tan(α+β)=1.故可得α+β= ,于是可得∠MCN為定值。

試題解析:

(Ⅰ)當點M,N分別是邊AB,AD的中點時,設∠DCN=∠BCM=θ,則∠MCN= ﹣2θ,

由條件得CD=BC=1,DN=BM= ,CN=CM= ,

所以sinθ= ,cosθ= ,

所以cos∠MCN=cos( ﹣2θ)=sin2θ=2sinθcosθ= ,

即∠MCN的余弦值是

(Ⅱ)設∠BCM=α,∠DCN=β,AM=x,AN=y,則BM=1﹣x,DN=1﹣y,

在△CBM中,tanα=1﹣x,

在△CDN中,tanβ=1﹣y,

所以tan(α+β)= = = ,(*)

因為△AMN的周長為2千米,

所以x+y+ =2,

化簡得xy=2(x+y)﹣2,

將上式代入(*)式,可得

tan(α+β)= = = =1,

,

所以α+β= ,

所以∠MCN是定值,且∠MCN=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域為(-3,3),

滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(xy),當x<0時,f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判斷f(x)的單調(diào)性,并證明;

(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是正方形,側(cè)面底面,且,分別為的中點.

(1)求證:平面;

(2)在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在單位正方體 中,O 的中點,如圖建立空間直角坐標系.

(1)求證 ∥平面 ;

(2)求異面直線OD夾角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗.為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,結果如下表:記成績不低于70分者為“成績優(yōu)良”.

分數(shù)

甲班頻數(shù)

5

6

4

4

1

一般頻數(shù)

1

3

6

5

5

(1)由以下統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的額概率不超過0.025的前提下認為“成績優(yōu)良與教學方式有關”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,Snn2ann(n-1),n=1,2,…

(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;

(2)設,求證 :b1b2+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程=x+;

參考公式:用最小二乘法求線性回歸方程系數(shù)公式 ,.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+1,x∈N*.x0n∈N*,使f(x0)+f(x0+1)+f(x0n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點”.則函數(shù)f(x)的“生成點”共有(  )

A.1B2C.3個 D4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù), 上的奇函數(shù),且.

(1)求的解析式;

(2)若函數(shù)上只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案