11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與x軸負半軸交于點A,P為橢圓第一象限上的點,直線OP交橢圓于另一點Q,橢圓的左焦點為F,若直線PF平分線段AQ,則橢圓的離心率為$\frac{1}{3}$.

分析 畫出圖形,連接OM,AP,通過△OMF∽△APQ,轉(zhuǎn)化求解離心率即可.

解答 解:如圖所示,連接OM,AP,因為PF平分AQ,即M為AQ的中點,所以O(shè)M為△APQ的中位線,所以△OMF∽△APQ,所以$\frac{OF}{AF}=\frac{OM}{PA}=\frac{1}{2}$,即$\frac{c}{a-c}=\frac{1}{2}$,所以e=$\frac{c}{a}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標系xOy中,以O(shè)x軸為始邊,作兩個角α,β,它們終邊分別經(jīng)過點P,Q,其中$P(\frac{1}{2},{cos^2}θ)$,Q(sin2θ,-1),θ∈R,且$sinα=\frac{4}{5}$.
(1)求cos2θ的值;
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x+y=3-cos4θ,x-y=4sin2θ,則$\sqrt{x}$+$\sqrt{y}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.cos23°cos37°-sin23°sin37°的值為( 。
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(2a-c)cosB=bcosC.
(1)求sinB的值;
(2)若$b=\sqrt{7}$,求△ABC的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點.
( I)若PA=PD,求證:平面PQB⊥平面PAD;
( II)若平面APD⊥平面ABCD,且PA=PD=AD=2,線段BC的中點為M,求M到平面APB的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$sinα+cosα=-\frac{{\sqrt{10}}}{5}$,且α∈(0,π)則tanα=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,sinA=$\frac{4}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}$=6,則△ABC的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)隨機變量X的分布列如下:
X-101
Pabc
其中a,b,c,成等差數(shù)列,若E(X)=$\frac{1}{3}$,則D(X)的值是( 。
A.$\frac{5}{9}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊答案