1.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知acosB=bcosA,邊BC上的中線(xiàn)長(zhǎng)為4,則△ABC面積的最大值是( 。
A.9B.$\frac{28}{3}$C.$\frac{32}{3}$D.12

分析 根據(jù)acosB=bcosA得出A=B,再根據(jù)余弦定理和中線(xiàn)長(zhǎng)求出a2的值,寫(xiě)出△ABC的面積,計(jì)算它的最大值即可.

解答 解:△ABC中,acosB=bcosA,
 由正弦定理得sinAcosB=sinBcosA,
∴sin(A-B)=0,
故A=B;
 由A=B知a=b,
又a2=b2+c2-2bccosA,
∴c=2acosA;
△ABD中,

由余弦定理得42=c2+${(\frac{a}{2})}^{2}$-2c•$\frac{a}{2}$cosB,
∴a2=$\frac{64}{1+{8cos}^{2}A}$;
∴△ABC的面積為
S=$\frac{1}{2}$acsinA
=$\frac{64sinAcosA}{{sinA}^{2}+{9cos}^{2}A}$
=$\frac{64tanA}{{tan}^{2}A+9}$
=$\frac{64}{tanA+\frac{9}{tanA}}$,
由基本不等式得
S≤$\frac{64}{2×\sqrt{tanA•\frac{9}{tanA}}}$=$\frac{32}{3}$,
當(dāng)且僅當(dāng)tanA=3時(shí),等號(hào)成立.
∴△ABC面積的最大值為$\frac{32}{3}$.
故選:C.

點(diǎn)評(píng) 本題主要考查三角函數(shù)及其變換、正弦和余弦定理等基礎(chǔ)知識(shí),同時(shí)考查運(yùn)算求解能力,屬于綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)f(x)在其定義域上既是減函數(shù)又是奇函數(shù),則函數(shù)f(x)的解析式可以是(  )
A.$f(x)={log_2}(\sqrt{{x^2}+1}-x)$B.$f(x)=\frac{1}{x}$C.f(x)=x2-x3D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)在(0,π)內(nèi)有兩個(gè)不相等角α,β,滿(mǎn)足方程acosx+bsinx+c=0.試證:
(1)$\frac{a}{cos\frac{α+β}{2}}$=$\frac{sin\frac{α+β}{2}}$=$\frac{c}{cos\frac{α-β}{2}}$;
(2)cos2$\frac{α-β}{2}$=$\frac{{c}^{2}}{{a}^{2}+^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x∈N|x≤1},B={x|x⊆A},C={x|x⊆B},則集合C中元素的個(gè)數(shù)為( 。
A.4B.8C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.從2013名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從2013人中剔除13人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2013人中,每人入選的機(jī)會(huì)( 。
A.不全相等B.均不相等
C.都相等,且為$\frac{1}{40}$D.都相等,且為 $\frac{50}{2013}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.現(xiàn)有40米長(zhǎng)的籬笆材料,如果利用已有的一面墻(設(shè)長(zhǎng)度夠用)作為一邊,圍成一塊面積為S平方米的矩形菜地,則S的最大值為200平方米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=$\left\{\begin{array}{l}\frac{1}{x},x<1\\{x^2}-1,x≥1\end{array}$,則$f({f({\frac{1}{3}})})$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在正三棱柱ABC-A1B1C1中,AB=2,AAl=3,點(diǎn)D為C1B的中點(diǎn),點(diǎn)P為AB的中點(diǎn).
(1)證明DP∥平面ACClAl
(2)求三棱錐C1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系中,已知△PAB的周長(zhǎng)為8,且點(diǎn)A,B的坐標(biāo)分別為(-1,0),(1,0).
(Ⅰ)試求頂點(diǎn)P的軌跡C1的方程;
(Ⅱ)若動(dòng)點(diǎn)P1(x1,y1)在曲線(xiàn)C1上,試求動(dòng)點(diǎn)$Q(\frac{x_1}{3},\frac{y_1}{{2\sqrt{2}}})$的軌跡C2的方程;
(Ⅲ)過(guò)點(diǎn)C(3,0)作直線(xiàn)l與曲線(xiàn)C2相交于M,N兩點(diǎn),試探究是否存在直線(xiàn)l,使得點(diǎn)N恰好是線(xiàn)段CM的中點(diǎn).若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案