【題目】有下列說(shuō)法:
①y=sinx+cosx在區(qū)間(﹣ ,
)內(nèi)單調(diào)遞增;
②存在實(shí)數(shù)α,使sinαcosα= ;
③y=sin( +2x)是奇函數(shù);
④x= 是函數(shù)y=cos(2x+
)的一條對(duì)稱軸方程.
其中正確說(shuō)法的序號(hào)是 .
【答案】①④
【解析】解:對(duì)于y=sinx+cosx= sin(x+
),在區(qū)間(﹣
,
)上,x+
∈(﹣
,
),函數(shù)單調(diào)遞增,故①正確.
∵sinαcosα= sin2α≤
,故不存在實(shí)數(shù)α,使sinαcosα=
,故②錯(cuò)誤.
∵y=sin( +2x)=sin(
+2x)=cos2x,是偶函數(shù),故③錯(cuò)誤.
④由于當(dāng)x= 時(shí),y=cosπ=﹣1,為函數(shù)的最小值,故x=
是函數(shù)y=cos(2x+
)的圖象的一條對(duì)稱軸方程,故④正確,
所以答案是:①④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識(shí),掌握兩角和與差的正弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,
,
.
,且
平面
,
,點(diǎn)
為
上任意一點(diǎn).
(1)求證: ;
(2)點(diǎn)在線段
上運(yùn)動(dòng)(包括兩端點(diǎn)),若平面
與平面
所成的銳二面角為60°,試確定點(diǎn)
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角△ABC的面積等于3 ,且AB=3,AC=4.
(1)求sin( +A)的值;
(2)求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(Ⅰ)討論直線與圓
的公共點(diǎn)個(gè)數(shù);
(Ⅱ)過(guò)極點(diǎn)作直線的垂線,垂足為
,求點(diǎn)
的軌跡與圓
相交所得弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
是邊長(zhǎng)為
的菱形,
,
,
為
中點(diǎn).
(1)求證:平面平面
;
(2)若,
,
的交點(diǎn)記為
,求證
平面
;
(3)在(2)的條件下求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,
,
,
為
中點(diǎn),
與
交于點(diǎn)
.
(1)求證:平面
;
(2)求證:平面
;
(3)求三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線
的焦點(diǎn), 若點(diǎn)
在
上,且
.
(1)求的值;
(2)若直線經(jīng)過(guò)點(diǎn)
且與
交于
(異于
)兩點(diǎn), 證明: 直線
與直線
的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示
(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個(gè)單位,才能使得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com