【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)若直線平行于直線,且與曲線只有一個(gè)公共點(diǎn),求直線的方程;
(2)若直線與曲線交于兩點(diǎn),,求的面積.
【答案】(1);(2).
【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,求得直線的方程,消去參數(shù)求得曲線的普通方程,結(jié)合直線與曲線的位置關(guān)系,結(jié)合,即可求解;
(2)聯(lián)立方程組,結(jié)果根與系數(shù)的關(guān)系,求得,利用弦長公式,求得,再利用點(diǎn)到直線的距離公式和三角形的面積公式,即可求解.
(1)因?yàn)橹本的極坐標(biāo)方程為,
所以化為平面直角坐標(biāo)系下的方程為,
因?yàn)榍的參數(shù)方程為(為參數(shù)),所以化為普通方程為.
因?yàn)橹本平行于直線,所以可設(shè)直線的方程為,
代入曲線的方程,可得,
因?yàn)橹本與曲線只有一個(gè)公共點(diǎn),
所以,解得,
所以直線的方程為.
(2)由(1)知直線的方程為,曲線的方程為,
聯(lián)立方程組,整理得,所以,,
所以弦長,
點(diǎn)到直線的距離為,
所以的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)設(shè)是的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:
(2)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】π為圓周率,e=2.718 28…為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)= 的單調(diào)區(qū)間;
(2) 求e3,3e,eπ,πe,3π,π3這6個(gè)數(shù)中的最大數(shù)與最小數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩個(gè)定點(diǎn)和點(diǎn),是動(dòng)點(diǎn),且直線,的斜率乘積為常數(shù),設(shè)點(diǎn)的軌跡為.
① 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;
② 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;
③ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對值為定值;
④ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對值為定值.
其中正確的命題是_______________.(填出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國新冠肺炎疫情進(jìn)入常態(tài)化,各地有序推進(jìn)復(fù)工復(fù)產(chǎn),下面是某地連續(xù)11天復(fù)工復(fù)產(chǎn)指數(shù)折線圖,下列說法正確的是( )
A.這11天復(fù)工指數(shù)和復(fù)產(chǎn)指數(shù)均逐日增加;
B.這11天期間,復(fù)產(chǎn)指數(shù)增量大于復(fù)工指數(shù)的增量;
C.第3天至第11天復(fù)工復(fù)產(chǎn)指數(shù)均超過80%;
D.第9天至第11天復(fù)產(chǎn)指數(shù)增量大于復(fù)工指數(shù)的增量;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點(diǎn)M(2,3),點(diǎn)A為其左頂點(diǎn),且AM的斜率為 ,
(1)求C的方程;
(2)點(diǎn)N為橢圓上任意一點(diǎn),求△AMN的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,點(diǎn)E,F分別為BC,PD的中點(diǎn),設(shè)直線PC與平面AEF交于點(diǎn)Q.
(1)已知平面PAB∩平面PCD=l,求證:AB∥l.
(2)求直線AQ與平面PCD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com