【題目】已知橢圓C過點M2,3,A為其左頂點,且AM的斜率為 ,

1)求C的方程;

2)點N為橢圓上任意一點,求△AMN的面積的最大值.

【答案】(1);(212.

【解析】

(1)由題意分別求得a,b的值即可確定橢圓方程;

(2)首先利用幾何關(guān)系找到三角形面積最大時點N的位置,然后聯(lián)立直線方程與橢圓方程,結(jié)合判別式確定點N到直線AM的距離即可求得三角形面積的最大值.

(1)由題意可知直線AM的方程為:,即.

y=0時,解得,所以a=4,

橢圓過點M(23),可得,

解得b2=12.

所以C的方程:.

(2)設(shè)與直線AM平行的直線方程為:,

如圖所示,當直線與橢圓相切時,與AM距離比較遠的直線與橢圓的切點為N,此時△AMN的面積取得最大值.

聯(lián)立直線方程與橢圓方程

可得:,

化簡可得:,

所以,即m2=64,解得m=±8,

AM距離比較遠的直線方程:

直線AM方程為:,

N到直線AM的距離即兩平行線之間的距離,

利用平行線之間的距離公式可得:,

由兩點之間距離公式可得.

所以△AMN的面積的最大值:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中,

1)根據(jù)散點圖判斷,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方類型?給出判斷即可,不必說明理由

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)已知這種產(chǎn)品的年利潤zx、y的關(guān)系為根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費時,年銷售量及年利潤的預(yù)報值是多少?

②年宣傳費x為何值時,年利潤的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,側(cè)面底面,且,為棱上一點,且

1)求證:平面

2)若二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸建立極坐標系,已知直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù)).

1)若直線平行于直線,且與曲線只有一個公共點,求直線的方程;

2)若直線與曲線交于兩點,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的學(xué)生積極參加體育鍛煉,其中有96%的學(xué)生喜歡足球或游泳,60%的學(xué)生喜歡足球,82%的學(xué)生喜歡游泳,則該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例是(

A.62%B.56%

C.46%D.42%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設(shè), 直線與曲線交于 兩點.

(1)當時,求的長度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)曲線在點處的切線與圓相切.

1)求函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種氣墊船的最大航速是海里小時,船每小時使用的燃料費用和船速的平方成正比.若船速為海里小時,則船每小時的燃料費用為元,其余費用(不論船速為多少)都是每小時元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

(1)試把船從甲地到乙地所需的總費用,表示為船速(海里小時)的函數(shù),并指出函數(shù)的定義域;

(2)當船速為每小時多少海里時,船從甲地到乙地所需的總費用最少?最少費用為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個不同零點、),設(shè)函數(shù)的定義域為,且的最大值記為,最小值記為.

1)求(用表示);

2)當時,試問以、、為長度的線段能否組成一個三角形,如果不一定,進一步求出的取值范圍,使它們能組成一個三角形;

3)求.

查看答案和解析>>

同步練習(xí)冊答案