已知等差數(shù)列{an}的首項(xiàng)為a,公差為d,且方程ax2-3x+2=0的解為1,d.
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和公式;
(2)求數(shù)列{3n-1an}的前n項(xiàng)和Tn.
(1) an=2n-1   Sn=n2  (2) Tn=1+(n-1)·3n

解:(1)方程ax2-3x+2=0的兩根為1,d.
所以a=1,d=2.
由此知an=1+2(n-1)=2n-1,前n項(xiàng)和Sn=n2.
(2)令bn=3n-1an=(2n-1)·3n-1,
則Tn=b1+b2+b3+…+bn=1·1+3·3+5·32+…+(2n-1)·3n-1,
3Tn=1·3+3·32+5·32+…+(2n-3)·3n-1+(2n-1)·3n,
兩式相減,得-2Tn=1+2·3+2·32+…+2·3n-1-(2n-1)·3n=1+-(2n-1)·3n=-2-2(n-1)·3n.
∴Tn=1+(n-1)·3n.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)個數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn.若對于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的個位數(shù),則a2013的值是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=an.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{an}是等差數(shù)列,則數(shù)列{bn}也為等差數(shù)列.類比這一性質(zhì)可知,若正項(xiàng)數(shù)列{cn}是等比數(shù)列,且{dn}也是等比數(shù)列,則dn的表達(dá)式應(yīng)為(  )
A.dnB.dn
C.dnD.dn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知公差不為0的等差數(shù)列{an},a1=1,且a2,a4-2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的通項(xiàng)公式是bn=2n-1,集合A={a1,a2,…,an,…},B={b1,b2b3,…,bn,…}.將集合AB中的元素按從小到大的順序排成一個新的數(shù)列{cn},求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列中的最大項(xiàng)是第k項(xiàng),則k=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若2、a、b、c、9成等差數(shù)列,則c-a=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列{an}的前n項(xiàng)和Sn=n2+3n,則a6+a7+a8=________.

查看答案和解析>>

同步練習(xí)冊答案