已知雙曲線
x2
m
-
y2
n
=1(m>0,n>0)的離心率為2,有一個焦點與拋物線y2=16x的焦點重合,則mn的值為(  )
A、4B、12C、16D、48
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線方程求得拋物線的焦點,進(jìn)而可知雙曲線的焦距,根據(jù)雙曲線的離心率求得m,最后根據(jù)m+n=16,求得n,則答案可得.
解答: 解:∵拋物線y2=16x的焦點為(4,0),則雙曲線的焦距為8,
則有m+n=16,①
∵雙曲線
x2
m
-
y2
n
=1(m>0,n>0)的離心率為2,
∴e=
c
a
=
4
m
=2②
由①②解得m=4,n=12,
∴mn=48
故選:D.
點評:本題主要考查了圓錐曲線的共同特征.解題的關(guān)鍵是對圓錐曲線的基本性質(zhì)熟練掌握,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
BC
=
a
,
CA
=
b
,
AB
=
c
,且滿足:|
a
|=1,|
b
|=2,|
c
|=
3
,則
a
b
+
b
c
+
c
a
的值為( 。
A、4
B、
7
2
C、-4
D、-
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一段演繹推理:“因為對數(shù)函數(shù)y=logax是減函數(shù);已知y=log2x是對數(shù)函數(shù),所以y=log2x是減函數(shù)”,結(jié)論顯然是錯誤的,這是因為( 。
A、推理形式錯誤
B、小前提錯誤
C、大前提錯誤
D、非以上錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+an+1=
(-1)n+1
2
(n∈N*)
,其中a1=-
1
2
,試通過計算a2,a3,a4,a5,猜想an等于( 。
A、an=
n
2
B、an=-
n
2
C、an=
n
2
(n為奇數(shù))
-
n
2
(n為偶數(shù))
D、
-
n
2
(n為奇數(shù))
n
2
(n為偶數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x-3)(x-1)<0的解集是(  )
A、{x|1<x<3}
B、{x|x<1或x>3}
C、{x|x<1}
D、{x|x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a、b、c分別是角A、B、C的對邊長,若a、b、c成等比數(shù)列,且a2=(a+c-b)•c,則角A等于( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(
1
2
x-
π
3
)的圖象,只需將y=sin
1
2
x圖象上的每個點縱坐標(biāo)不變,橫坐標(biāo)(  )
A、向左平移
π
3
個單位
B、向右平移
π
3
個單位
C、向左平移
2
3
π
個單位
D、向右平移
2
3
π
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P(t,t),Q(10-t,0),其中0<t<10,則點M(6,1),N(4,5)與直線PQ的關(guān)系是(  )
A、M,N均在直線PQ上
B、M,N均不在直線PQ上
C、M不在直線PQ上,N可能在直線PQ上
D、M可能在直線PQ上,N不在直線PQ上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,x),
b
=(1,x),若2
b
-
a
a
垂直,則|a|=( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

同步練習(xí)冊答案