橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點分別為A、B.點P雙曲線C2
x2
a2
-
y2
b2
=1在第一象限內的圖象上一點,直線AP、BP與橢圓C1分別交于C、D點.若△ACD與△PCD的面積相等.
(1)求P點的坐標;
(2)能否使直線CD過橢圓C1的右焦點,若能,求出此時雙曲線C2的離心率,若不能,請說明理由.
(1)設P(x0,y0)(x0>0,y0>0),又有點A(-a,0),B(a,0).
∵S△ACD=S△PCD,
∴C為AP的中點,∴C(
x0-a
2
y0
2
)

將C點坐標代入橢圓方程,得
(x0-a)2
a2
+
y20
b2
=4
,
x20
a2
-
y20
b2
=1
(x0-a)2
a2
+
x20
a2
=5

∴x0=2a(x0=-a舍去),
y0=
3
b
,
P(2a,
3
b)

(2)∵KPD=KPB=
y0
x0-a
=
3
b
a
,
直線PD:y=
3
b
a
(x-a)
代入
x2
a2
+
y2
b2
=1
⇒2x2-3ax+a2=0
xD=
a
2
(xD=a舍去)

C(
x0-a
2
,
y0
2
),即C(
a
2
,
3
2
b)

∴CD垂直于x軸.若CD過橢圓C1的右焦點,則
a
2
=
a2-b2

b=
3
2
a

e=
a2+b2
a
=
7
2
.故可使CD過橢圓C1的右焦點,此時C2的離心率為
7
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y2=4x的焦點為F.過點P(2,0)的直線交拋物線于A(x1,y1),B(x2,y2)兩點,直線AF,BF分別與拋物線交于點M,N.
(Ⅰ)求y1y2的值;
(Ⅱ)記直線MN的斜率為k1,直線AB的斜率為k2.證明:
k1
k2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線x2-y2=1上一點Q作直線x+y=2的垂線,垂足為N,則線段QN的中點P的軌跡方程為(  )
A.2x2-2y2-2x-1=0B.x2+y2=1
C.2x2+2y2-y=0D.2x2-2y2-2x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)其右準線交x軸于點A,雙曲線虛軸的下端點為B,過雙曲線的右焦點F(c,0)作垂直于x軸的直線交雙曲線于點P,若點D滿足:2
OD
=
OF
+
OP
(O為原點)且
AB
AD
(λ≠0)

(1)求雙曲線的離心率;
(2)若a=2,過點B的直線l交雙曲線于M、N兩點,問在y軸上是否存在定點C,使?
CM
CN
為常數(shù),若存在,求出C點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8相交于A、B兩點,且
OA
OB
=0
(O為坐標原點),直線l與圓O相切,切點在劣弧AB(含A、B兩點)上,且與拋物線C相交于M、N兩點,d是M、N兩點到拋物線C的焦點的距離之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科)一動圓過定點P(0,1),且與定直線l:y=-1相切.
(1)求動圓圓心C的軌跡方程;
(2)若(1)中的軌跡上兩動點記為A(x1,y1),B(x2,y2),且x1x2=-16.
①求證:直線AB過一定點,并求該定點坐標;
②求|PA|+|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線x2=4
3
y
的準線過雙曲線
x2
m2
-y2=-1
的一個焦點,則雙曲線的離心率為( 。
A.
3
2
4
B.
6
2
C.
3
D.
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),
(1)若橢圓的長軸長為4,離心率為
3
2
,求橢圓的標準方程;
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(O為坐標原點),求直線l的斜率k的取值范圍;
(3)過原點O任意作兩條互相垂直的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR的一邊距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)的右頂點為P(1,0),過C1的焦點且垂直長軸的弦長為1.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設拋物線C2:y=x2+h(h∈R)的焦點為F,過F點的直線l交拋物線與A、B兩點,過A、B兩點分別作拋物線C2的切線交于Q點,且Q點在橢圓C1上,求△ABQ面積的最值,并求出取得最值時的拋物線C2的方程.

查看答案和解析>>

同步練習冊答案