求值:(1);

(2)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在二項式定理這節(jié)教材中有這樣一個性質(zhì):Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)計算1•C30+2•C31+3•C32+4•C33的值方法如下:
設(shè)S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用類似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)將(1)的情況推廣到一般的結(jié)論,并給予證明
(3)設(shè)Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值
(1)(2-
62
27
)
1
3
+
(-
11
3
)
2
-
3
16-0.75
+
1
2
(4-
1
2
)-2

(2)2(lg
2
)2+lg
2
lg5+
(lg
2
)
2
-lg2+1
-log89•log2764

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省廈門市高一第一學期期中數(shù)學試卷 題型:解答題

計算求值:

(1)    (2) 若, 求的值

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆重慶市高一上學期期末考試數(shù)學 題型:解答題

(13分) 已知.求值:

(1)    ;

(2)   

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分) 已知0<α<,tan=,求值:(1) (2)cos()

查看答案和解析>>

同步練習冊答案