12.設(shè)拋物線y2=2px(p>0)的焦點為F,過F且斜率為$\sqrt{3}$的直線交拋物線于A,B兩點,若線段AB的垂直平分線與 x軸交于點M(11,0),則p=(  )
A.2B.3C.6D.12

分析 由題意可知:拋物線y2=2px(p>0)的焦點為F($\frac{p}{2}$,0),直線AB的斜率為$\sqrt{3}$,則垂直平分線的斜率為-$\frac{\sqrt{3}}{3}$,且與x軸交于點M(11,0),則y=-$\frac{\sqrt{3}}{3}$(x-11),則直線AB的方程為y=$\sqrt{3}$(x-$\frac{p}{2}$),代入拋物線方程,由韋達定理可知:x1+x2=$\frac{5p}{3}$,根據(jù)中點坐標公式求得中點P坐標,代入AB的垂直平分線方程,即可求得p的值.

解答 解:由題意可知:拋物線y2=2px(p>0)的焦點為F($\frac{p}{2}$,0),
直線AB的斜率為$\sqrt{3}$,則垂直平分線的斜率為-$\frac{\sqrt{3}}{3}$,且與x軸交于點M(11,0),則y=-$\frac{\sqrt{3}}{3}$(x-11),
設(shè)直線AB的方程為:y=$\sqrt{3}$(x-$\frac{p}{2}$),A(x1,y1),B(x2,y2),AB的中點為P(x0,y0),
$\left\{\begin{array}{l}{y=\sqrt{3}(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$,整理得:3x2-5px+$\frac{3{p}^{2}}{4}$=0,
由韋達定理可知:x1+x2=$\frac{5p}{3}$,
由中點坐標公式可知:x0=$\frac{5p}{6}$,則y0=$\frac{\sqrt{3}p}{3}$,
由P在垂直平分線上,則y0=-$\frac{\sqrt{3}}{3}$(x0-11),即p=-($\frac{5p}{6}$-11),
解得:p=6,
故選:C.

點評 本題考查拋物線的標準方程,直線與拋物線的位置關(guān)系,考查韋達定理,弦長公式及垂直平分線的性質(zhì),考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.隨機地從[-1,1]中任取兩個數(shù)x,y,則事件“y<sin$\frac{π}{2}$x”發(fā)生的概率為$\frac{1}{π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓O為△ABC的外接圓,半徑為2,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{OA}$=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BO}$=6|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|,其中a>0.
(1)當(dāng)a=1時,求不等式f2(x)≤2的解集;
(2)已知函數(shù)g(x)=f(2x+a)+2f(x)的最小值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點F(0,1)為拋物線x2=2py的焦點.
(1)求拋物線C的方程;
(2)點A、B、C是拋物線上三點且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=x4+2x3+4x2+cx的圖象關(guān)于直線x=m對稱,則f(x)的最小值是-$\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點($\sqrt{2}$,1),且以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)M(x,y)是橢圓C上的動點,P(p,0)是x軸上的定點,求|MP|的最小值及取最小值時點M的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.過點P(2,1)作直線l分別與x,y軸正半軸交于A、B兩點.
(1)當(dāng)△AOB面積最小時,求直線l的方程;
(2)當(dāng)|OA|+|OB|取最小值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(1,f(1))處的切線方程為x-2y-2=0.
(1)求a、b的值;
(2)當(dāng)x≥1時,f(x)+$\frac{k}{x}$<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案