已知F是拋物線y2=4x的焦點(diǎn),過(guò)點(diǎn)F1的直線與拋物線交于A,B兩點(diǎn),且|AF|=3|BF|,則線段AB的中點(diǎn)到該拋物線準(zhǔn)線的距離為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    10
B
分析:根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義即條件,求出A,B的中點(diǎn)橫坐標(biāo),即可求出線段AB的中點(diǎn)到拋物線準(zhǔn)線的距離.
解答:拋物線y2=4x的焦點(diǎn)坐標(biāo)為(1,0),準(zhǔn)線方程為x=-1
設(shè)A(x1,y1),B(x2,y2),則
∵|AF|=3|BF|,∴x1+1=3(x2+1),∴x1=3x2+2
∵|y1|=3|y2|,∴x1=9x2,∴x1=3,x2=
∴線段AB的中點(diǎn)到該拋物線準(zhǔn)線的距離為[(x1+1)+(x2+1)]=
故選B.
點(diǎn)評(píng):本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問(wèn)題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A、
3
4
B、1
C、
5
4
D、
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=4x的焦點(diǎn),A,B是拋物線上兩點(diǎn),△AFB是正三角形,則該正三角形的邊長(zhǎng)為
8±4
3
8±4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)已知F是拋物線y2=4x的焦點(diǎn),Q是拋物線的準(zhǔn)線與x軸的交點(diǎn),直線l經(jīng)過(guò)點(diǎn)Q.
(Ⅰ)若直線l與拋物線恰有一個(gè)交點(diǎn),求l的方程;
(Ⅱ)如題20圖,直線l與拋物線交于A、B兩點(diǎn),
(。┯浿本FA、FB的斜率分別為k1、k2,求k1+k2的值;
(ⅱ)若線段AB上一點(diǎn)R滿足
|AR|
|RB|
=
|AQ|
|QB|
,求點(diǎn)R的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn).若線段AB的中點(diǎn)到y(tǒng)軸的距離為
5
4
,則|AF|+|BF|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=4x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=5,則線段AB的中點(diǎn)到該拋物線準(zhǔn)線的距離為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案