16.設(shè)Sn為等差數(shù)列{an}的前n項的和a1=1,$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{2015}}}}{2015}=1$,則數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前2017項和為( 。
A.$\frac{2017}{1009}$B.$\frac{2017}{2018}$C.$\frac{1}{2017}$D.$\frac{1}{2018}$

分析 利用等差數(shù)列的性質(zhì),等差數(shù)列的通項公式以及前n項和公式,求得數(shù)列用裂項法進(jìn)行求和{an}的通項公式、前n項公式,可得數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的通項公式,進(jìn)而用裂項法求得它的前2017項和.

解答 解:Sn為等差數(shù)列{an}的前n項的和a1=1,設(shè)公差為d,
∵$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{2015}}}}{2015}=1$=$\frac{201{7a}_{1}+\frac{2017•2016}{2}d}{2017}$-$\frac{201{5a}_{1}+\frac{2015•2014}{2}d}{2015}$=a1+1008d-(a1+1007d)=d,
∴an=a1+(n-1)d=n,Sn=n•1+$\frac{n(n-1)}{2}$•1=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
則數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前2017項和為2[1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2017}$-$\frac{1}{2018}$)=2(1-$\frac{1}{2018}$)=$\frac{2017}{1009}$,
故選:A.

點(diǎn)評 本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項公式以及前n項和公式,用裂項法進(jìn)行求和,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.化分?jǐn)?shù)指數(shù)冪:($\root{3}{a}$)2•$\sqrt{a^{3}}$=${a}^{\frac{7}{6}}•^{\frac{3}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a,b,c分別為角A,B,C的對邊,a2-c2=b2-$\frac{8bc}{5}$,a=6,sinB=$\frac{4}{5}$.
(Ⅰ)求角A的正弦值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線x-2y-3=0在y軸上的截距是( 。
A.3B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左頂點(diǎn)為A,右頂點(diǎn)為B,點(diǎn)P是橢圓C上位于x軸上方的動點(diǎn),直線AP,BP與直線y=3分別交于G,H兩點(diǎn),則線段GH的長度的最小值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y≤2\\ x≥0\\ y≥0\end{array}\right.$,則當(dāng)y≤ax+a-1恒成立時,實數(shù)a的取值范圍是a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線$l:x-\sqrt{3}y+1=0$的斜率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2016年年底,某商業(yè)集團(tuán)根據(jù)相關(guān)評分標(biāo)準(zhǔn),對所屬20家商業(yè)連鎖店進(jìn)行了年度考核評估,并依據(jù)考核評估得分(最低分60分,最高分100分)將這些連鎖店分別評定為A,B,C,D四個類型,其考核評估標(biāo)準(zhǔn)如表:
評估得分[60,70)[70,80)[80,90)[90,100]
評分類型DCBA
考核評估后,對各連鎖店的評估分?jǐn)?shù)進(jìn)行統(tǒng)計分析,得其頻率分布直方圖如下:
(Ⅰ)評分類型為A的商業(yè)連鎖店有多少家;
(Ⅱ)現(xiàn)從評分類型為A,D的所有商業(yè)連鎖店中隨機(jī)抽取兩家做分析,求這兩家來自同一評分類型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F作圓x2+y2=a2的切線,切點(diǎn)為M,延長FM交雙曲線右支于點(diǎn)P,若M為FP的中點(diǎn),則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案