17.已知角α終邊上有一點$P(cos\frac{10π}{3},sin(-\frac{11π}{6}))$,則tanα=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.-1D.1

分析 利用誘導(dǎo)公式化簡求得P的坐標(biāo),再由正切函數(shù)的定義得答案.

解答 解:∵$cos\frac{10π}{3}=-cos\frac{π}{3}=-\frac{1}{2}$,
$sin(-\frac{11π}{6})=sin\frac{π}{6}=\frac{1}{2}$,
∴P($-\frac{1}{2},\frac{1}{2}$),
則tanα=$\frac{\frac{1}{2}}{-\frac{1}{2}}=-1$.
故選:C.

點評 本題考查任意角的三角函數(shù)定義,考查誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.作為重慶一中民主管理的實踐之一,高三年級可以優(yōu)先選擇教學(xué)樓,為了調(diào)遷了解同學(xué)們的意愿,現(xiàn)隨機(jī)調(diào)出了16名男生和14名女生,結(jié)果顯示,男女生中分別有10人和5人意愿繼續(xù)留在第一教學(xué)樓.
(1)根據(jù)以上數(shù)據(jù)完成以下2×2的列聯(lián)表:
 留在第一教學(xué)樓不留在第一教學(xué)樓總計
男生10 16
女生5 14
總計  30
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否有90%的把握認(rèn)為性別與意愿留在第一教學(xué)樓有關(guān)?
(3)如果從意愿留在第一教學(xué)樓的女生中(其中恰有3人精通制作PPT),選取2名負(fù)責(zé)為第一教學(xué)樓各班圖書角作一個總展示的PPT,用于樓道電子顯示屏的宣傳,那么選出的女生中至少有1人能勝任此工作的概率是多少?
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k)0.400.250.100.010
k0.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知t>0,若 $\int{\begin{array}{l}t\\ 0\end{array}}(2x-2)dx=8$,則t=( 。
A.1B.4C.-2或4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)已知x>0,y>0且x+y=1,求$\frac{8}{x}$$+\frac{2}{y}$的最小值;
(2)已知0<x<2,求y=$\sqrt{3x(8-3x)}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列結(jié)論:
(1)若f(x)是R上奇函數(shù)且滿足f(x+2)=-f(x),則f(x)的圖象關(guān)于x=1對稱;
(2)若(2x+$\sqrt{3}$)4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a42-(a1+a32的值為-1;
(3)一個籃球運(yùn)動員投籃一次得3分的概率為a,得2分的概率為b,不得分概率為c,且a,b,c∈(0,1),若他投籃一次得分的數(shù)學(xué)期望為2,則$\frac{2}{a}+\frac{1}{3b}$的最小值為$\frac{16}{3}$;
其中正確結(jié)論的序號為(1)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊過點P(-12,5),則( 。
A.cosα=-$\frac{5}{12}$B.tanα=-$\frac{12}{13}$C.sinα=$\frac{5}{13}$D.tanα=-$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,其前n項和為Sn,且a1a5=64,S5-S3=48.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)有正整數(shù)m,l(5<m<l),使得am,5a5,al成等差數(shù)列,求m,l的值;
(3)設(shè)k,m,l∈N*,k<m<1,對于給定的k,求三個數(shù) 5ak,am,al經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.將編號為1,2,3,4的四個材質(zhì)和大小都相同的球,隨機(jī)放入編號為1,2,3,4的四個盒子中,每個盒子放一個球,ξ表示球的編號與所放入盒子的編號正好相同的個數(shù).
(1)求1號球恰好落入1號盒子的概率;
(2)求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)是定義在R上的函數(shù),對任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;
(2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的單調(diào)遞增的,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案