已知,函數(shù).

(1)當時,畫出函數(shù)的大致圖像;
(2)當時,根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結論;
(3)試討論關于x的方程解的個數(shù).

(1)詳見解析;(2)詳見解析;(3)詳見解析.

解析試題分析:(1)當a=2時, ,作出圖象;
(2)由(1)寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間,再根據(jù)單調(diào)性定義證明即可;
(3)由題意知方程的解得個數(shù)等價于函數(shù)的圖像與直線的交點個數(shù).即函數(shù)的圖象與直線的交點個數(shù).
試題解析:(1)如圖所示
 3分
(2)單調(diào)遞減區(qū)間: 4分
證明:設任意的 
 
  5分
因為,所以
于是,即6分
所以函數(shù)上是單調(diào)遞減函數(shù)               7分
(3) 由題意知方程的解得個數(shù)等價于函數(shù)的圖像與直線的交點個數(shù).即函數(shù)的圖象與直線的交點個數(shù)
,注意到,
當且僅當時,上式等號成立,借助圖像知                    8分
所以,當時,函數(shù)的圖像與直線有1個交點; 9分
,時,函數(shù)的圖像與直線有2個交點;  10分
,時,函數(shù)的圖像與直線有3個交點;12分.
考點:1.絕對值的函數(shù);2.函數(shù)的值域;3.函數(shù)的零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),,
(1)若,試判斷并證明函數(shù)的單調(diào)性;
(2)當時,求函數(shù)的最大值的表達式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為正實數(shù),函數(shù).
(1)若,求的取值范圍;(2)求的最小值;
(3)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象經(jīng)過點
(1)求函數(shù)的解析式;
(2)設,用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上單調(diào)遞減;
(3)解不等式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù).
(I)證明:函數(shù)上單調(diào)遞增;
(Ⅱ)求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)求不等式的解集:
(2)求函數(shù)的定義域:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品(百臺),總成本為(萬元),其中固定成本為2萬元, 每生產(chǎn)1百臺,成本增加1萬元,銷售收入(萬元),假定該產(chǎn)品產(chǎn)銷平衡。
(1)若要該廠不虧本,產(chǎn)量應控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺時,可使利潤最大?
(3)求該廠利潤最大時產(chǎn)品的售價。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)上是減函數(shù),且為奇函數(shù),滿足,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若x∈時,不等式f(1+xlog2a)≤f(x-2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案