【題目】 的單調遞減區(qū)間為 .
【答案】[kπ﹣ ,kπ+ ](k∈Z)
【解析】解:令t=sinxcosx+cos2x,則y= 單調遞減, t=sinxcosx+cos2x= + sin(2x+ )>0,
令2kπ﹣ ≤2x+ ≤2kπ+
解得kπ﹣ ≤x≤kπ+ ,單調遞增區(qū)間為[kπ﹣ ,kπ+ ](k∈Z),
∴ 的單調遞減區(qū)間為[kπ﹣ ,kπ+ ](k∈Z),
所以答案是[kπ﹣ ,kπ+ ](k∈Z).
【考點精析】解答此題的關鍵在于理解復合函數單調性的判斷方法的相關知識,掌握復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”,以及對正弦函數的單調性的理解,了解正弦函數的單調性:在上是增函數;在上是減函數.
科目:高中數學 來源: 題型:
【題目】已知直線 ,若存在實數 使得一條曲線與直線 由兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于 ,則稱此曲線為直線 的“絕對曲線”.下面給出的四條曲線方程:
① ;② ;③ ;④ .
其中直線 的“絕對曲線”的條數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】是否存在一個等比數列{an}同時滿足下列三個條件:①a1+a6=11且a3a4= ;②an+1>an(n∈N*);③至少存在一個m(m∈N*且m>4),使得 am﹣1 , am2 , am+1+ 依次構成等差數列?若存在,求出通項公式;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題 “存在”,命題:“曲線表示焦點在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實數的取值范圍;
(2)若是的必要不充分條件,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若一個四位數的各位數字相加和為,則稱該數為“完美四位數”,如數字“”.試問用數字組成的無重復數字且大于的“完美四位數”有( )個
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數, ().
(1)求函數的單調增區(qū)間;
(2)當時,記,是否存在整數,使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為, .求:
(1)tan(α+β)的值;
(2)α+2β的大。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com