1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

分析 (Ⅰ)利用特殊角的三角函數(shù)值,兩角和的正切函數(shù)公式可求tanφ的值,進(jìn)而利用二倍角的正切函數(shù)公式即可計(jì)算得解.
(Ⅱ)利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)所求即可得解.

解答 解:(Ⅰ)∵φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$=$\frac{tanφ+1}{1-tanφ}$,可得:tanφ=-2,
∴tan2φ=$\frac{2tanφ}{1-ta{n}^{2}φ}$=$\frac{4}{3}$.
(Ⅱ)$\frac{sinφ+cosφ}{2cosφ-sinφ}$=$\frac{tanφ+1}{2-tanφ}$=$\frac{-2+1}{2-(-2)}$=-$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查了特殊角的三角函數(shù)值,兩角和的正切函數(shù)公式,二倍角的正切函數(shù)公式,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=sinωx+$\sqrt{3}$cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,則f(x)在[0,$\frac{π}{4}$]上的最大值為( 。
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{AB}=({x,1}),({x>0}),\overrightarrow{AC}=({1,2}),|{\overrightarrow{BC}}|=\sqrt{5}$,則$\overrightarrow{AB},\overrightarrow{AC}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若角α的終邊經(jīng)過點(diǎn)(-4,3),則tanα=( 。
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若θ為第四象限的角,且$sinθ=-\frac{1}{3}$,則cosθ=$\frac{2\sqrt{2}}{3}$;sin2θ=-$\frac{4\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義在R上的函數(shù)f (x)是奇函數(shù),且f(x)在(0,+∞)是增函數(shù),f(3)=0,則不等式f(x)>0的解集為(-3,0)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$θ∈[{\frac{π}{2},π}]$,則$\sqrt{1+2sin({π+θ})sin({\frac{π}{2}-θ})}$=( 。
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.i是虛數(shù)單位,則$|{\frac{5+3i}{4-i}}|$等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}中,a1=1,an+1=an+3,若an=2 017,則n=(  )
A.667B.668C.669D.673

查看答案和解析>>

同步練習(xí)冊(cè)答案