【題目】若直線yxm與曲線x恰有一個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是______.

【答案】{m|-1<m≤1或m=-}

【解析】

x=,化簡(jiǎn)得x2+y2=1,注意到x≥0,所以這個(gè)曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫(huà)出圖象,這樣因?yàn)橹本與其只有一個(gè)交點(diǎn),由此能求出實(shí)數(shù)m的取值范圍.

x=,化簡(jiǎn)得x2+y2=1,注意到x≥0,

所以這個(gè)曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,

且其圖象只在一、四象限.

畫(huà)出圖象,這樣因?yàn)橹本與其只有一個(gè)交點(diǎn),

從圖上看出其三個(gè)極端情況分別是:

①直線在第四象限與曲線相切,

②交曲線于(0,﹣1)和另一個(gè)點(diǎn),

③與曲線交于點(diǎn)(0,1).

直線在第四象限與曲線相切時(shí)解得m=﹣,

當(dāng)直線y=x+m經(jīng)過(guò)點(diǎn)(0,1)時(shí),m=1.

當(dāng)直線y=x+m經(jīng)過(guò)點(diǎn)(0,﹣1)時(shí),m=﹣1,所以此時(shí)﹣1<m≤1.

綜上滿足只有一個(gè)公共點(diǎn)的實(shí)數(shù)m的取值范圍是:

﹣1<m≤1m=﹣

故答案為:{m|-1<m≤1或m=-}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù),( ),若對(duì)任意,總存在,使得成立,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD= ,AB=2,AD=1,若M、N分別是邊AD、CD上的點(diǎn),且滿足 =λ,其中λ∈[0,1],則 的取值范圍是(
A.[﹣3,﹣1]
B.[﹣3,1]
C.[﹣1,1]
D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= (x>0),計(jì)算觀察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實(shí)得到當(dāng)n∈N*時(shí),fn(1)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線f(x)= ax3﹣blnx在x=1處的切線方程為y=﹣2x+
(Ⅰ)求f(x)的極值;
(Ⅱ)證明:x>0時(shí), (e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)f(x)=ax-2.

(1)當(dāng)a=3時(shí),解不等式|f(x)|<4;

(2)解關(guān)于x的不等式|f(x)|<4;

(3)若關(guān)于x的不等式|f(x)|≤3對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專論測(cè)高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問(wèn)島高幾何?譯文如下:要測(cè)量海島上一座山峰A的高度AH,立兩根高三丈的標(biāo)桿BC和DE,前后兩桿相距BD=1000步,使后標(biāo)桿桿腳D與前標(biāo)桿桿腳B與山峰腳H在同一直線上,從前標(biāo)桿桿腳B退行123步到F,人眼著地觀測(cè)到島峰,A、C、F三點(diǎn)共線,從后標(biāo)桿桿腳D退行127步到G,人眼著地觀測(cè)到島峰,A、E、G三點(diǎn)也共線,則山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以O(shè)為極點(diǎn)x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)Q是曲線C上的動(dòng)點(diǎn),求點(diǎn)Q到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)為不同的兩點(diǎn),直線的方程為,設(shè),其中均為實(shí)數(shù).下列四個(gè)說(shuō)法中:

①存在實(shí)數(shù),使點(diǎn)在直線上;

②若,則過(guò)兩點(diǎn)的直線與直線重合;

③若,則直線經(jīng)過(guò)線段的中點(diǎn);

④若,則點(diǎn)在直線的同側(cè),且直線與線段的延長(zhǎng)線相交.

所有結(jié)論正確的說(shuō)法的序號(hào)是______________

查看答案和解析>>

同步練習(xí)冊(cè)答案