18.公差為正數(shù)的等差數(shù)列{an}的前n項和為Sn,S3=18,且已知a1、a4的等比中項是6,求S10=( 。
A.145B.165C.240D.600

分析 利用公差為正數(shù)的等差數(shù)列{an}的前n項和公式、通項公式和等比中項性質(zhì)列出方程組,求出a1=3,d=3,由此能求出S10

解答 解:公差為正數(shù)的等差數(shù)列{an}的前n項和為Sn,S3=18,且已知a1、a4的等比中項是6,
∴$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}d=18}\\{{a}_{1}({a}_{1}+3d)={6}^{2}}\\{d>0}\end{array}\right.$,
解得a1=3,d=3,
∴S10=10×3+$\frac{10×9}{2}×3$=165.
故選:B.

點評 本題考查等差數(shù)列的前10項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若圓x2+y2-4x-4y-10=0上恰有2個不同的點到直線l:y=x+b(b>0)的距離為2$\sqrt{2}$,則正數(shù)b的取值范圍為( 。
A.(0,2)B.(0,2]C.(2,10)D.[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法正確的是( 。
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標(biāo)準(zhǔn)差是3.3
C.K2是用來判斷兩個分類變量是否相關(guān)的隨機變量,當(dāng)K2的值很小時可以推定兩類變量不相關(guān)
D.設(shè)有一個回歸直線方程為$\widehat{y}$=2-1.5x,則變量x每增加一個單位,$\widehat{y}$平均減少1.5個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線系方程為xcosφ+ysinφ=2,圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,(φ為參數(shù)),則直線與圓的位置關(guān)系為( 。
A.相交不過圓心B.相交且經(jīng)過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.離心率為$\frac{{\sqrt{3}}}{2}$,且過點(2,0)的橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$
C.x2+4y2=1D.$\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)$f(x)=lnx+\frac{k}{x},k∈R$.
(1)若曲線y=f(x)在點(e,f(e))處的切線與直線x-2=0垂直,求f(x)的單調(diào)區(qū)間(其中e為自然對數(shù)的底數(shù));
(2)若對任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式(2x+1)(x-1)≤0的解集為( 。
A.$[{-\frac{1}{2},1}]$B.$[{-1,\frac{1}{2}}]$C.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$D.$({-∞,-1}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C經(jīng)過A(-1,1),且圓心坐標(biāo)為C(1,1).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l經(jīng)過點(2,2),且l與圓C相交所得的弦長為2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}m+{x^2},|x|≥1\\ x,|x|<1\end{array}\right.$的圖象過點(1,1),則函數(shù)f(x)的值域是(-1,+∞).

查看答案和解析>>

同步練習(xí)冊答案