18.若直線ax-by+2=0(a>0,b>0)過圓C:x2+y2+2x-4y+1=0的圓心,則$\frac{1}{a}$+$\frac{1}$的最小值為(  )
A.$\frac{1}{4}$B.$\sqrt{2}$C.$\frac{3}{2}$+$\sqrt{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

分析 直線ax-by+2=0(a>0,b>0)經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),可得-a-2b+2=0,再利用“乘1法”和基本不等式的性質(zhì)即可得出.

解答 解:∵ax-by+2=0(a>0,b>0)經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),
∴-a-2b+2=0,即a+2b=2.
∴$\frac{1}{a}$+$\frac{1}$=$\frac{1}{2}$(a+2b)($\frac{1}{a}$+$\frac{1}$)=$\frac{1}{2}$(3+$\frac{2b}{a}$+$\frac{a}$)≥$\frac{1}{2}$(3+2$\sqrt{2}$),當(dāng)且僅當(dāng)a=$\sqrt{2}$b=$\sqrt{2}$-1時(shí)取等號(hào).
∴$\frac{1}{a}$+$\frac{1}$的最小值為$\frac{3}{2}$+$\sqrt{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an}的首項(xiàng)a1=8,令bn=log2an,若數(shù)列{bn}的前7項(xiàng)和最大且S6≠S7≠S8,求數(shù)列{an}的公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,$\overline{z}$是復(fù)數(shù)z的共軛復(fù)數(shù),若z$•\overline{z}$=2($\overline{z}$+i),則z=(  )
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,莖葉圖記錄了甲、乙兩組各四名同學(xué)完成某道數(shù)學(xué)題的得分情況.乙組某個(gè)數(shù)據(jù)的個(gè)位數(shù)模糊,記為x,已知甲、乙兩組的平均成績(jī)相同.
(1)求x的值,并判斷哪組學(xué)生成績(jī)更穩(wěn)定;
(2)在甲、乙兩組中各抽出一名同學(xué),求這兩名同學(xué)的得分之和低于20分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行右邊的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{3}{7}$B.$\frac{4}{9}$C.$\frac{5}{11}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)到一條漸近線的距離為a,則雙曲線的離心率等于( 。
A.$\frac{\sqrt{2}}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸為正半軸為極軸建立極坐標(biāo)系,圓C和直線l的極坐標(biāo)方程分別為ρ=2cosθ,$\sqrt{5}$ρcos(θ+α)=2(其中tanα=2,α∈(0,$\frac{π}{2}$)).
(Ⅰ)求圓C和直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C和直線l相交于點(diǎn)A和點(diǎn)B,求以AB為直徑的圓D的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{y≥-x+b}\end{array}\right.$且z=2x+y的最小值為4,則實(shí)數(shù)b的值為(  )
A.1B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.把函數(shù)$y=5sin(2x-\frac{π}{6})$圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再把所得函數(shù)的圖象向右平移$\frac{π}{3}$個(gè)單位,得到圖象的解析式為(  )
A.y=5cosxB.y=5cos4xC.y=-5cosxD.y=-5 cos4x

查看答案和解析>>

同步練習(xí)冊(cè)答案