已知函數(shù)f(x)=
1
cos2x
+
2
sin2x
,則函數(shù)f(x)的最小值為
3+2
2
3+2
2
分析:化簡(jiǎn)函數(shù)f(x)的解析式為 1+tan2x+2+
2
tan2x
,再利用基本不等式求出它的最小值.
解答:解:∵函數(shù)f(x)=
1
cos2x
+
2
sin2x
=
cos2 x + sin2x
cos2x
+
2(cos2x+ sin2x)
sin2x
=1+tan2x+2+
2
tan2x
≥3+2
2
,
當(dāng)且僅當(dāng) tan2x=
2
tan2x
 時(shí),等號(hào)成立.
故答案為  3+2
2
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換,基本不等式的應(yīng)用,注意檢驗(yàn)等號(hào)成立的條件,式子的變形是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案