10.已知集合A={x|2<x<4},B={x|x>3或x<1},則A∩B=( 。
A.{x|2<x<5}B.{x|x<4或x>5}C.{x|3<x<4}D.{x|x<2或x>5}

分析 利用交集定義求解.

解答 解:∵集合A={x|2<x<4},B={x|x>3或x<1},
∴A∩B={x|3<x<4}.
故選:C.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,則cos2θ=$\frac{79}{81}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.按如圖所示的程序框圖運算:若輸出k=2,則輸入x的取值范圍是( 。
A.(20,25]B.(30,57]C.(30,32]D.(28,57]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.橢圓$\frac{x^2}{16}+\frac{y^2}{m}=1$的焦距為$2\sqrt{7}$,則m的值為( 。
A.9B.23C.9或23D.$16-\sqrt{7}或16+\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)$f(x)=6lnx+\frac{1}{2}{x^2}-5x$
(Ⅰ)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖:在正方體ABCD-A1B1C1D1中,設直線A1B與平面A1DCB1所成角為θ1,二面角A1-DC-A的大小為θ2,則θ1,θ2為(  )
A.45o,30oB.30o,45oC.30o,60oD.60o,45o

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.無論λ取何值,直線(λ+2)x-(λ-1)y+6λ+3=0必過定點(-3,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若f(sinθ)=3-cos2θ,則f(cos2θ)等于(  )
A.3-sin2θB.3-cos4θC.3+cos4θD.3+cos2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知直線y=-x+1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A、B兩點.且OA⊥OB(其中O為坐標原點).
(1)若橢圓的離心率為$\frac{\sqrt{3}}{3}$,求橢圓的標準方程;
(2)求證:不論a,b如何變化,橢圓恒過定點P;
(3)若直線l:y=ax+m過(2)中的定點P,且橢圓的離心率e∈[$\sqrt{\frac{6}{7}}$,$\sqrt{\frac{16}{17}}$],求原點到直線l距離的取值范圍.

查看答案和解析>>

同步練習冊答案