A. | (1,9+4$\sqrt{2}$) | B. | (0,8+4$\sqrt{2}$) | C. | (1,1+2$\sqrt{2}$) | D. | (4,8) |
分析 由題意,圓心到直線的距離$\frac{1}{2}$>d>$\sqrt{\frac{1}{4}-\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,確定4<a2+b2<8,表示以原點為圓心,2,2$\sqrt{2}$為半徑的圓環(huán).a(chǎn)2+b2-2a=(a-1)2+b2-1,(a-1)2+b2表示(a,b)與(1,0)的距離的平方,其范圍為(1,(2$\sqrt{2}$+1)2),即可得出結(jié)論.
解答 解:由題意,圓心到直線的距離$\frac{1}{2}$>d>$\sqrt{\frac{1}{4}-\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,
∴$\frac{1}{2}$>$\frac{1}{\sqrt{{a}^{2}+^{2}}}$>$\frac{\sqrt{2}}{4}$,
∴4<a2+b2<8,
表示以原點為圓心,2,2$\sqrt{2}$為半徑的圓環(huán).
a2+b2-2a=(a-1)2+b2-1,
(a-1)2+b2表示(a,b)與(1,0)的距離的平方,其范圍為(1,(2$\sqrt{2}$+1)2),
∴a2+b2-2a的取值范圍為(0,8+4$\sqrt{2}$),
故選:B.
點評 本題考查直線與圓的位置關(guān)系,考查了點到直線的距離公式,訓(xùn)練了利用配方法,解答此題的關(guān)鍵在于確定4<a2+b2<8,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>0,sinx≥1 | B. | ?x≤0,sinx<1 | C. | ?x>0,sinx<1 | D. | ?x≤0,sin≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | -7 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<1 | B. | m>-3 | C. | m<3 | D. | m>1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com