17.已知數(shù)列{an}是等差數(shù)列,且a3+a9=4,那么數(shù)列{an}的前11項和等于22.

分析 根據(jù)等差數(shù)列性質(zhì)a3+a9=a1+a11=22,由等差數(shù)列前n項和公式即可求得數(shù)列{an}的前11項和S11

解答 解:由等差數(shù)列的性質(zhì)可知,a3+a9=a1+a11=22,
數(shù)列{an}的前11項和S11=$\frac{({a}_{1}+{a}_{11})×11}{2}$=$\frac{4×11}{2}$=22,
故答案為:22.

點評 本題考查等差數(shù)列性質(zhì),等差數(shù)列前n項和公式,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下面的數(shù)組均由三個數(shù)組成,它們是:(1,2,-1),(2,4,-2),(3,8,-5),(4,16,-12),(5,32,-27),…(an,bn,cn),若數(shù)列{cn}的前n項和為Sn,則S10=-1991.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線ax+by=1與圓${x^2}+{y^2}=\frac{1}{4}$相交于不同的A,B兩點(其中a,b是實數(shù)),且$\overrightarrow{OA}•\overrightarrow{OB}$>0(O是坐標(biāo)原點),則a2+b2-2a的取值范圍為(  )
A.(1,9+4$\sqrt{2}$)B.(0,8+4$\sqrt{2}$)C.(1,1+2$\sqrt{2}$)D.(4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=kx-lnx 在區(qū)間[2,5]上單調(diào)遞增,則實數(shù)k的取值范圍是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.關(guān)于x的不等式$\frac{x+a}{{x}^{2}+4x+3}$>0的解集是(-3,-1)∪(2,+∞),則a的值為( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.F是拋物線y2=2x的焦點,A、B是拋物線上的兩點,|AF|+|BF|=8,則線段AB的中點到y(tǒng)軸的距離為( 。
A.4B.$\frac{9}{2}$C.$\frac{7}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了測得某塔的高度,在地面A處測得塔尖的仰角為30°,前進(jìn)200米后,到達(dá)B處,測得塔尖的仰角為60°,則塔高為( 。
A.$\frac{400}{3}$mB.$\frac{200}{3}$mC.200$\sqrt{3}$mD.100$\sqrt{3}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=cos2φ+1}\end{array}\right.$(φ為參數(shù)),定P(-1,0).
(1)設(shè)直線l與曲線C交于A,B兩點,求|AP|•|BP|的值.
(2)過點P作曲線C的切線m(斜率不為0),以原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求切線m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=2x,若對x∈[1,2],不等式af(x)+g(2x)≥0恒成立,則實數(shù)a的取值范圍是( 。
A.[-1,+∞)B.$[{-2\sqrt{2},+∞})$C.$[{-\frac{17}{6},+∞})$D.$[{-\frac{257}{60},+∞})$

查看答案和解析>>

同步練習(xí)冊答案