已知矩陣A=
1-1
a1
,其中a∈R,若點(diǎn)P(1,1)在矩陣A的變換下得到點(diǎn)P′(0,-3).
(1)求實(shí)數(shù)a的值;
(2)求矩陣A的特征值.
分析:(1)根據(jù)點(diǎn)P在矩陣A的變化下得到的點(diǎn)P′(0,-3),寫出題目的關(guān)系式,列出關(guān)于a的等式,解方程即可.
(2)寫出矩陣的特征多項(xiàng)式,令多項(xiàng)式等于0,得到矩陣的特征值,對(duì)于兩個(gè)特征值分別解二元一次方程,得到矩陣A的屬于特征值-1的一個(gè)特征向量和矩陣A的屬于特征值3的一個(gè)特征向量.
解答:解:(1)由:(1)由
1-1
a1
 
1
1
=
0
-3
,
得a+1=-3,則a=-4(3分)
(2)由(1)知 A=
1-1
-41
,
所以,由F(λ)=
.
λ-11
4λ-1
.
得:λ1=-1,λ2=3(7分)
λ1=-1時(shí),由-2x+y=0得:y=-2x取
α1
=
1
2

λ2=3時(shí),由2x+y=0得:y=-2x,取
α2
=
1
-2
.(9分)
所以,A的特征值為-1或3.
屬于-1的一個(gè)特征向量
α1
=
1
2
,
屬于3的一個(gè)特征向量
α2
=
1
-2
(10分)
點(diǎn)評(píng):本題考查二階矩陣,考查二階矩陣的特征值的求法,考查二階矩陣的特征向量的求法,因?yàn)槭歉叩葦?shù)學(xué)的內(nèi)容,考查的比較簡(jiǎn)單,是一個(gè)中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
2
1

(1)求矩陣A;
(2)若向量β=
7
4
,計(jì)算A5β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計(jì)算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
求證:AD的延長(zhǎng)線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長(zhǎng)度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

矩陣與變換.已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,屬于λ的特征向量是
α1
=
2
1
,求矩陣A與其逆矩陣.
坐標(biāo)系與參數(shù)方程已知直線l的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在曲線C:
x=-1+cosθ
y=sinθ
(θ為參數(shù))
上求一點(diǎn),使它到直線l的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:矩陣與變換
已知矩陣A=
.
1a
-1b
.
,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
.
2
1
.

(Ⅰ)求矩陣A;
(Ⅱ)求直線y=2x在矩陣M所對(duì)應(yīng)的線性變換下的像的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案