定義在定義域D內(nèi)的函數(shù)y=f(x),若對(duì)任意的x1x2D,都有|f(x1)-f(x2)|<1,則稱函數(shù)y=f(x)為“Storm函數(shù)”.已知函數(shù)f(x)=x3x+a(x∈[-1,1],a∈R).

(1)若,求過(guò)點(diǎn)處的切線方程;

(2)函數(shù)是否為“Storm函數(shù)”?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由.

(1)(2)當(dāng)c≤-時(shí),ax2+bx+c≤0的解集為R


解析:

本題屬于信息遷移題,主要考查利用導(dǎo)數(shù)求函數(shù)的極值.(1),切線方程為

(2)函數(shù)f(x)=x3x+a(x∈[-1,1],a∈R)的導(dǎo)數(shù)是f′(x)=3x2-1,

當(dāng)3x2-1=0時(shí),即x,

當(dāng)x時(shí),f′(x)=3x2-1<0;當(dāng)x時(shí),f′(x)=3x2-1>0,

f(x)在x∈[-1,1]內(nèi)的極小值是a

同理,f(x)在x∈[-1,1]內(nèi)的極大值是a+

f(1)=f(-1)=a,

∴函數(shù)f(x)=x3x+a(x∈[-1,1],a∈R)的最大值是a+,最小值是a,

因?yàn)閨f(x1)-f(x2)|<|fmaxfmin|,

故|f(x1)-f(x2)|<|fmaxfmin|=<1.

所以函數(shù)f(x)=x3x+a(x∈[-1,1],a∈R)是“Storm函數(shù)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出封閉函數(shù)的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則函數(shù)①f1(x)=3x-1;②f2(x)=-
1
2
x2-
1
2
x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封閉的是
 
.(填序號(hào)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出封閉函數(shù)的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則函數(shù)①f(x)=3x-1;②f(x)=-
1
2
x2-
1
2
x+1
;③f(x)=log2(x2+1);④f(x)=x
1
2
,其中在D上封閉的是
②③④
②③④
.(填序號(hào)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說(shuō)明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無(wú)窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉(寫出推理過(guò)程):f1(x)=2x-1,f2(x)=-
1
2
x2
-
1
2
x
+1,f3(x)=2x-1;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-a
x+2
在D2上封閉?若存在,求出a的值,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉,且給出推理過(guò)程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a使函數(shù)f(x)=
5x-a
x+2
在D2上封閉,若存在,求出a的值,并給出證明,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案