9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,則f(1+log23)的值為$\frac{1}{12}$.

分析 利用分段函數(shù)以及函數(shù)的關(guān)系式,求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,1+log23<3,2+log23>3
則f(1+log23)=f(2+log23)=$(\frac{1}{2})^{2+lo{g}_{2}3}$=($\frac{1}{2}$)2×($\frac{1}{2}$)${\;}^{lo{g}_{2}3}$=($\frac{1}{2}$)2×(2-1)${\;}^{lo{g}_{2}3}$=($\frac{1}{2}$)2×2${\;}^{lo{g}_{2}{3}^{-1}}$=$\frac{1}{4}$×3-1=$\frac{1}{12}$.
故答案為:$\frac{1}{12}$.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)f(n)=24+27+210+…+23n+10(n∈N),則f(n)=$\frac{16({8}^{n+3}-1)}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.一個(gè)幼兒園的母親節(jié)聯(lián)誼會(huì)上,有3個(gè)小孩分別給媽媽畫(huà)了一幅畫(huà)作為禮物,放在了3個(gè)相同的信封里,可是忘了做標(biāo)記,現(xiàn)在媽媽們隨機(jī)任取一個(gè)信封,則恰好有一個(gè)媽媽拿到了自己孩子的畫(huà)的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下列說(shuō)法正確的序號(hào)是(2)(4)
 (1)第一象限角是銳角;
 (2)函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+2x-3)的單調(diào)增區(qū)間為(-∞,-3);
 (3)函數(shù)f(x)=|cosx|是周期為2π的偶函數(shù);
 (4)方程$x=tanx,x∈({-\frac{π}{2},\frac{π}{2}})$只有一個(gè)解x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)若f(α)=$\frac{5}{3}$,求cos(α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.雙曲線$\frac{x^2}{4}-\frac{y^2}{9}=1$的實(shí)軸長(zhǎng)為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=x2+ax+$\frac{9}{a-1}$,(a為常數(shù)且a≠1),
(1)若不等式f(x)<0的解集為{x|-1<x<3},求a的值;
(2)若a>1,求f(1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:
582,584,584,586,586,586,588,588,588,588.
若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加20后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的有④.(把你認(rèn)為正確的序號(hào)填入空格中)
①眾數(shù) ②平均數(shù) ③中位數(shù) ④標(biāo)準(zhǔn)差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知二次函數(shù)y=f(x)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f(x)=6x-2.?dāng)?shù)列{an}的前n項(xiàng)和為sn,點(diǎn)(n,sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求f(x)和數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)bn=$\frac{3}{{a{\;}_na{\;}_{n+1}}},T_n^{\;}$是數(shù)列{bn}的前n項(xiàng)和并證明$\frac{3}{7}≤{T_n}<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案