20.一個幼兒園的母親節(jié)聯(lián)誼會上,有3個小孩分別給媽媽畫了一幅畫作為禮物,放在了3個相同的信封里,可是忘了做標記,現(xiàn)在媽媽們隨機任取一個信封,則恰好有一個媽媽拿到了自己孩子的畫的概率為$\frac{1}{2}$.

分析 媽媽們隨機任取一個信封,共有6種取法,再求出其中恰好有一個媽媽拿到了自己孩子的畫包含多少種取法,由此能求出恰好有一個媽媽拿到了自己孩子的畫的概率.

解答 解:媽媽們隨機任取一個信封,共有${A}_{3}^{3}$=6種取法,
其中恰好有一個媽媽拿到了自己孩子的畫包含${C}_{3}^{1}×1$=3種取法,
∴恰好有一個媽媽拿到了自己孩子的畫的概率為p=$\frac{3}{6}=\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知a、b、c是三條不同的直線,α是一個平面,以下敘述中正確的是①④.
①若a∥b,b⊥c,則a⊥c;      ②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;    ④若a⊥α,b?α,則a⊥b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=x+1,x∈{-1,1,2}的值域是{0,2,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知三棱錐的三視圖如圖所示,且a+b=4,試求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8,E為DD1的中點.
(1)求異面直線B1C與A1C1所成角的大小;(用反三角函數(shù)形式表示)
(2)求多面體D-BCB1的體積.LF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和Sn滿足:Sn=t(Sn-an+1)(t為常數(shù),且t≠0,t≠1).
(1)證明:{an}成等比數(shù)列;
(2)設${b_n}=a_n^2+{S_n}•{a_n}$,若數(shù)列{bn}為等比數(shù)列,求t的值;
(3)在滿足條件(2)的情形下,設cn=4an+1,數(shù)列{cn}的前n項和為Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7對任意的n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知a>b,ab≠0,下列不等式中恒成立的有( 。
①a2>b2②2a>2b③a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$④$\frac{1}{a}$<$\frac{1}$⑤($\frac{1}{3}$)a<($\frac{1}{3}$)b
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,則f(1+log23)的值為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有2個紅球、3個白球的甲箱和裝有2個紅球、2個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(Ⅰ)求顧客抽獎1次能獲獎的概率;
(Ⅱ)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,求X的分布列和數(shù)學期望.
(Ⅲ)若只從甲箱中抽取3個球,記抽到的三個球中紅球的數(shù)目是隨機變量Y,求Y的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案