在等差數(shù)列中,,則(    ).
A.45  B.75 C.180  D.300
C

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000902220466.png" style="vertical-align:middle;" />是等差數(shù)列,所以
點(diǎn)評:在等差數(shù)列中,“若”這條性質(zhì)的應(yīng)用十分廣泛,要靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1 (n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點(diǎn)Pn都在(1)中的直線l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;
(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知是等比數(shù)列的前項(xiàng)和,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,若對任意的等差數(shù)列及任意的正整
數(shù)都有不等式設(shè)等差數(shù)列的前項(xiàng)和為,若對任意的等差數(shù)列及任意的
正整數(shù)都有不等式成立,則實(shí)數(shù)的最大值成立,則實(shí)數(shù)的最大
值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:數(shù)列的前項(xiàng)和為,且滿足.
(Ⅰ)求:,的值;
(Ⅱ)求:數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列
項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列的前n項(xiàng)的和,那么這個(gè)數(shù)列的通項(xiàng)公式為(  )
A.B.  
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知遞增等差數(shù)列中,的等比中項(xiàng),則它的第4項(xiàng)到第11項(xiàng)的和為
A.180B.198C.189D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知數(shù)列中,,,其前項(xiàng)和滿足,).
(Ⅰ)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè), 求數(shù)列的前項(xiàng)和 ;
(Ⅲ)設(shè)為非零整數(shù),),試確定的值,使得對任意,有恒成立.

查看答案和解析>>

同步練習(xí)冊答案