【題目】已知點(diǎn)是橢圓上一點(diǎn), 分別為的左、右焦點(diǎn), , , 的面積為.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn),記直線的斜率分別為,當(dāng)最大時(shí),求直線的方程.
【答案】(1) ;(2) 直線的方程為.
【解析】試題分析:(1)根據(jù)三角形面積公式得到,即,
再結(jié)合余弦定理和橢圓的定義得到a,b,c的值即可.(2) 設(shè), ,用點(diǎn)坐標(biāo)表示斜率,得到的表達(dá)式,再求函數(shù)值域即可.
(1)易知,由,
,由余弦定理及橢圓定義有:
,又,∴,從而.
(2)①當(dāng)直線的斜率為0時(shí),則;
②當(dāng)直線的斜率不為0時(shí),設(shè), ,直線的方程為,
將代入,整理得,
則, ,又, ,
所以,
,
令,則,
當(dāng)即時(shí), ;
當(dāng)時(shí), ,
∴或.
當(dāng)且僅當(dāng),即時(shí), 取得最大值.
由①②得直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,奇函數(shù)的個(gè)數(shù)為( ) ①y=x2sinx ②y=sinx , x∈ ③y=xcosx , x∈ ④y=tanx .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求證{an+3}是等比數(shù)列
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 .
(1)計(jì)算a1 , a2 , a3的值,并猜想{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.
(I)求曲線在點(diǎn)處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),f(0)=0,當(dāng)x>0時(shí),f(x)=log x.
(1)求 f(﹣4)的函數(shù)值;
(2)求函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.
(I)求曲線在點(diǎn)處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式cx2+bx+a<0的解集為{x|﹣3<x< },則不等式的解集為ax2+bx+c≥0( )
A.
B.
或x<﹣2}
C.
D.{x|x<﹣3或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com