若函數(shù)f(x)=4asin(
1
2
ax+
π
4
)
的最小正周期為π,則正實數(shù)a=
4
4
分析:由函數(shù)y=Asin(ωx+∅)的周期公式,得函數(shù)f(x)=4asin(
1
2
ax+
π
4
)
的最小正周期為
1
2
a
=π,解之即得正數(shù)a的值.
解答:解:∵a>0
∴函數(shù)f(x)=4asin(
1
2
ax+
π
4
)
的最小正周期為
1
2
a
=
a

由此可得
a
=π,所以a=4
故答案為:4
點評:本題給出含有字母參數(shù)的三角函數(shù)表達式,在已知周期的情形下求字母的值,著重考查了三角函數(shù)的周期公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
x
,x>1
(3a-1)x+4a,x≤1
為R上的減函數(shù),則實數(shù)a的取值范圍為
[
2
7
1
3
)
[
2
7
,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①x>2是x2-3x+2>0的充分不必要條件.
②函數(shù)y=
x-1
x+1
圖象的對稱中心是(1,1).
③已知x,y∈R,i為虛數(shù)單位,且(x-2)i-y=1+i,則(1+i)x-y的值為-4.
④若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
,對任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實數(shù)a的取值范圍是(
1
7
,1)

其中正確命題的序號為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個函數(shù)g(x)=(
1
a
-
1
4
)x(a≠0,a>-1)
,h(x)=(4a-1)
1
x
+2(x>0)
,函數(shù)g(x)與h(x)的和函數(shù)為f(x);
(1)求函數(shù)f(x);
(2)當(dāng)a=5時,求函數(shù)f(x)在x∈[1,2]上的值域;
(3)若函數(shù)f(x)的最小值為m,且m>2+
7
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,其中正確命題的序號為
.:
①x>2是x2-3x+2>0的充分不必要條件.
②函數(shù)y=
x-1
x+1
圖象的對稱中心是(1,1).
③若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
,對任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實數(shù)a的取值范圍是(
1
7
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法:
①x>2是x2-3x+2>0的充分不必要條件.
②函數(shù)y=
x-1
x+1
圖象的對稱中心是(1,1).
③已知x,y∈R,i為虛數(shù)單位,且(x-2)i-y=1+i,則(1+i)x-y的值為-4.
④若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
,對任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實數(shù)a的取值范圍是(
1
7
,1)

其中正確命題的序號為______.

查看答案和解析>>

同步練習(xí)冊答案