【題目】觀察(x3)′=3x2 , (x5)′=5x4 , (sinx)′=cosx,由歸納推理得:若定義在R上的函數(shù)f(x)滿足f(﹣x)=﹣f(x),記g(x)為f(x)的導函數(shù),則g(﹣x)=( )
A.f(x)
B.﹣f(x)
C.g(x)
D.﹣g(x)
【答案】C
【解析】解:根據(jù)(x3)′=3x2、(x5)′=5x4、(sinx)′=cosx,發(fā)現(xiàn)原函數(shù)都是一個奇函數(shù),它們的導數(shù)都是偶函數(shù) 由此可得規(guī)律:一個奇函數(shù)的導數(shù)是偶函數(shù).
而定義在R上的函數(shù)f(x)滿足f(﹣x)=﹣f(x),說明函數(shù)f(x)是一個奇函數(shù)
因此,它的導數(shù)應(yīng)該是一個偶函數(shù),即g(﹣x)=g(x)
故選C
【考點精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.
科目:高中數(shù)學 來源: 題型:
【題目】曲線y=xex+1在點(1,e+1)處的切線方程是( )
A.2ex﹣y﹣e+1=0
B.2ey﹣x+e+1=0
C.2ex+y﹣e+1=0
D.2ey+x﹣e+1=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用反證法證明某命題時,對其結(jié)論:“自然數(shù)a、b、c中恰有一個奇數(shù)”正確的反設(shè)為( )
A.a、b、c都是奇數(shù)
B.a、b、c都是偶數(shù)
C.a、b、c中至少有兩個奇數(shù)
D.a、b、c中至少有兩個奇數(shù)或都是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1≤x≤3},B={x|0<x<a},若AB,則實數(shù)a的范圍是( )
A.[3,+∞)
B.(3,+∞)
C.[﹣∞,3]
D.[﹣∞,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b平面α,直線a平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯誤的,這是因為( )
A.大前提錯誤
B.小前提錯誤
C.推理形式錯誤
D.非以上錯誤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com