已知函數(shù)f(x)=ln x+2x-6.
(1)證明:函數(shù)f(x)有且只有一個零點;
(2)求該零點所在的一個區(qū)間,使這個區(qū)間的長度不超過
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三次函數(shù),為實常數(shù)。
(1)若時,求函數(shù)的極大、極小值;
(2)設(shè)函數(shù),其中是的導(dǎo)函數(shù),若的導(dǎo)函數(shù)為,,與軸有且僅有一個公共點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)若,設(shè)函數(shù),求的極大值;
(2)設(shè)函數(shù),討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實數(shù)m的取值范圍;
(3)若存在實數(shù),使成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求證:當(dāng)時,;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,現(xiàn)要在邊長為的正方形內(nèi)建一個交通“環(huán)島”.正方形的四個頂點為圓心在四個角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運算中取)
(2)若中間草地的造價為元,四個花壇的造價為元,其余區(qū)域的造價為元,當(dāng)取何值時,可使“環(huán)島”的整體造價最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com