分析 (1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.由曲線C:$\frac{{x}^{2}}{4}$+y2=1,令x=2cosθ,y=sinθ,可得參數(shù)方程.
(2)設(shè)M(2cosθ,sinθ),可得點(diǎn)M到直線l的距離d=$\frac{4-2\sqrt{2}sin(θ+\frac{π}{4})}{\sqrt{5}}$,利用三角函數(shù)的單調(diào)性值域即可得出.
解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程:x+2y-4=0.
由曲線C:$\frac{{x}^{2}}{4}$+y2=1,令x=2cosθ,y=sinθ,可得參數(shù)方程:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(2)設(shè)M(2cosθ,sinθ),
∴點(diǎn)M到直線l的距離d=$\frac{|2cosθ+2sinθ-4|}{\sqrt{5}}$=$\frac{4-2\sqrt{2}sin(θ+\frac{π}{4})}{\sqrt{5}}$∈$[\frac{(4-2\sqrt{2})\sqrt{5}}{5},\frac{(4+2\sqrt{2})\sqrt{5}}{5}]$.
點(diǎn)評(píng) 本題考查了參數(shù)方程的應(yīng)用、三角函數(shù)的單調(diào)性值域與和差公式、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |f(x)-f(a)|≤3|a|+3 | B. | |f(x)-f(a)|≤2|a|+4 | C. | |f(x)-f(a)|≤|a|+5 | D. | |f(x)-f(a)|≤2(|a|+1)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (5,6] | B. | [5,6) | C. | (6,7] | D. | [6,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{AB}∥\overrightarrow{BC}$ | B. | $\overrightarrow{AB}∥\overrightarrow{AD}$ | C. | $\overrightarrow{BC}∥\overrightarrow{AC}$ | D. | $\overrightarrow{AC}∥\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
無(wú)促銷活動(dòng) | 采用促銷方案1 | 采用促銷方案2 | ||
本年度平均銷售額不高于上一年度平均銷售額 | 48 | 11 | 31 | 90 |
本年度平均銷售額高于上一年度平均銷售額 | 52 | 69 | 29 | 150 |
100 | 80 | 60 |
售價(jià)x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
$\hat y=-1200lnx+5000$ | $\hat y=-27x+1700$ | $\hat y=-\frac{1}{3}{x^2}+1200$ | |
$\sum_{i=1}^8{({y_i}}-{\hat y_i}{)^2}$ | 49428.74 | 11512.43 | 175.26 |
$\sum_{i=1}^8{({y_i}}-\overline y{)^2}$ | 124650 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com