12.函數(shù)$y=2\sqrt{x+3}+5\sqrt{1-x}$的最大值為2$\sqrt{29}$.

分析 由柯西不等式得:[($\sqrt{x+3})^{2}$2+($\sqrt{1-x})^{2}$2][22+52]$≥(2\sqrt{x+3}+5\sqrt{1-x})^{2}$即可求解.

解答 解:由柯西不等式得:[($\sqrt{x+3})^{2}$2+($\sqrt{1-x})^{2}$2][22+52]$≥(2\sqrt{x+3}+5\sqrt{1-x})^{2}$
⇒4×29≥(5$\sqrt{1-x}$+2$\sqrt{x+3}$)2,⇒$5\sqrt{1-x}+2\sqrt{x+3}$$≤2\sqrt{29}$
故答案為:$2\sqrt{29}$.

點(diǎn)評(píng) 本題考查了柯西不等式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ax3+x2+bx+1在x=1和x=2處都有極值,求a,b,并求出此函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=({x-1}){e^x}-k{x^2}({k∈({\frac{1}{2},1}]})$,則f(x)在[0,k]的最大值h(k)=( 。
A.2ln2-2-(ln2)3B.-1C.2ln2-2-(ln2)2kD.(k-1)ek-k3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示,點(diǎn)O為正方體ABCD  A′B′C′D′的中心,點(diǎn)E為棱B′B的中點(diǎn),若AB=1,則下面說法正確的是( 。
A.直線AC與直線EC′所成角為45°
B.點(diǎn)E到平面OCD′的距離為$\frac{1}{2}$
C.四面體O  EA′B′在平面ABCD上的射影是面積為$\frac{1}{6}$的三角形
D.過點(diǎn)O,E,C的平面截正方體所得截面的面積為$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.正四面體ABCD的棱長(zhǎng)為4,E為棱AB的中點(diǎn),過E作此正四面體的外接球的截面,則截面面積的最小值是( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某單位招聘員工,有200名應(yīng)聘者參加筆試,隨機(jī)抽查了其中20名應(yīng)聘者筆試試卷,統(tǒng)計(jì)他們的成績(jī)?nèi)缦卤恚?br />
分?jǐn)?shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)[90,95)
人數(shù)1366211
若按筆試成績(jī)擇優(yōu)錄取40名參加面試,由此可預(yù)測(cè)參加面試的分?jǐn)?shù)線為(  )
A.70分B.75分C.80分D.85分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線${C_1}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),${C_2}:\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=\frac{{2\sqrt{3}}}{3}+\frac{t}{2}\end{array}\right.$(t為參數(shù))
(1)曲線C1,C2的交點(diǎn)為A,B,求|AB|;
(2)以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,過極點(diǎn)的直線l1與C1交于O,C兩點(diǎn),與直線ρsinθ=2交于點(diǎn)D,求$\frac{{|{OC}|}}{{|{OD}|}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù)),曲線C:$\frac{{x}^{2}}{4}$+y2=1
(1)求直線l的普通方程和曲線C的參數(shù)方程;
(2)若點(diǎn)M在曲線C上運(yùn)動(dòng),試求出M到直線l的距離的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時(shí)圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案