(2011•濰坊二模)
π
2
0
(x-sinx)dx
等于(  )
分析:由于F(x)=
1
2
x2+cosx為f(x)=x-sinx的一個原函數(shù)即F′(x)=f(x),根據(jù)∫abf(x)dx=F(x)|ab公式即可求出值.
解答:解:∵(
1
2
x2+cosx)′=x-sinx,
π
2
0
(x-sinx)dx
=(
1
2
x2+cosx)|
 
π
2
0
=
π3
8
-1

故答案為:B
點評:此題考查學(xué)生掌握函數(shù)的求導(dǎo)法則,會求函數(shù)的定積分運算,是一道基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)設(shè)p:
xx-2
<0
,q:0<x<m,若p是q成立的充分不必要條件,則m的取值范圍是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)已知數(shù)列an=2n-1(n∈N*),把數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,記(m,n)表示該數(shù)陣中第m行中從左到右的第n個數(shù),則S(10,6)對應(yīng)于數(shù)陣中的數(shù)是
101
101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)已知
m
=(cos?x,sin?x),
n
=(cos?x,2
3
cos?x-sin?x)
,?>0,函數(shù)f(x)=
m
n
+|
m
|
,x1,x2是集合M={x|f(x)=1}中任意兩個元素,且|x1-x2|的最小值為
π
2

(1)求?的值.
(2)在△ABC中,a,b,c分別是A,B,C的對邊.f(A)=2,c=2,S△ABC=
3
2
,求a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)運行如圖的程序框圖,當(dāng)輸入m=-4時的輸出結(jié)果為n,若變量x,y滿足
x+y≤3
x-y≥-1
y≥n
,則目標(biāo)函數(shù)z=2x+y的最大值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)已知偶函數(shù)f(x)對?x∈R滿足f(2+x)=f(2-x)且當(dāng)-2≤x≤0時,f(x)=log2(1-x),則f(2011)的值為(  )

查看答案和解析>>

同步練習(xí)冊答案