19.直線(xiàn)$\left\{\begin{array}{l}x=1+tcosα\\ y=-2+tsinα\end{array}$(t為參數(shù),0≤a<π)必過(guò)點(diǎn)(  )
A.(1,-2)B.(-1,2)C.(-2,1)D.(2,-1)

分析 根據(jù)題意,將直線(xiàn)的參數(shù)方程變形為普通方程,由直線(xiàn)的點(diǎn)斜式方程分析可得答案.

解答 解:根據(jù)題意,直線(xiàn)的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=-2+tsinα\end{array}$,
則其普通方程為y+2=tanα(x-1),
分析可得該直線(xiàn)過(guò)定點(diǎn)(1,-2);
故選:A.

點(diǎn)評(píng) 本題考查直線(xiàn)的參數(shù)方程,涉及直線(xiàn)過(guò)定點(diǎn)問(wèn)題,關(guān)鍵是將直線(xiàn)的參數(shù)方程變形為普通方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.定義:函數(shù)f(x)在閉區(qū)間[a,b]上的最大值與最小值之差為函數(shù)f(x)的極差,若定義在區(qū)間[-2b,3b-1]上的函數(shù)f(x)=x3-ax2-(b+2)x是奇函數(shù),則a+b=1,函數(shù)f(x)的極差為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知O為坐標(biāo)原點(diǎn),點(diǎn)A(5,-4),點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x<1}\\{y≤2}\end{array}\right.$內(nèi)的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范圍是[-8,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=x2+ax+b,m,n滿(mǎn)足m<n且f(m)=n,f(n)=m,則當(dāng)m<x<n時(shí),( 。
A.f(x)+x<m+nB.f(x)+x>m+nC.f(x)-x<0D.f(x)-x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(x)=cos2x+asinx-$\frac{a}{4}$-$\frac{1}{2}$(0≤x≤$\frac{π}{2}$),其中a>0.
(1)用a表示f(x)的最大值M(a);
(2)當(dāng)M(a)=2時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x-1-alnx(a<0).
(1)討論f(x)的單調(diào)性;
(2)若對(duì)任意x1,x2∈(0,1],且x1≠x2,都有$|f({x_1})-f({x_2})|<4|\frac{1}{x_1}-\frac{1}{x_2}|$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓C:x2+y2-2x+a=0,設(shè)AB為圓C的一條直徑,$\overrightarrow{OA}•\overrightarrow{OB}$=-6(O為坐標(biāo)原點(diǎn)),則a的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=$\frac{1}{2}$x2+2x-3lnx+4a的極小值為-$\frac{3}{2}$,則a的值為( 。
A.-2B.-1C.-4D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案