【題目】某工廠為了解用電量y與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了5天的用電量與當(dāng)天氣溫,得到如下統(tǒng)計(jì)表:
曰期 | 8月1曰 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
平均氣溫(℃) | 33 | 30 | 32 | 30 | 25 |
用電量(萬(wàn)度) | 38 | 35 | 41 | 36 | 30 |
xiyi=5446, xi2=4538, = , = ﹣
(1)請(qǐng)根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.據(jù)氣象預(yù)報(bào)9月3日的平均氣溫是 23℃,請(qǐng)預(yù)測(cè)9月3日的用電量;(結(jié)果保留整數(shù))
(2)請(qǐng)從表中任選兩天,記用電量(萬(wàn)度)超過(guò)35的天數(shù)為ξ,求ξ的概率分布列,并求其數(shù)學(xué)期望和方差.
【答案】
(1)解:計(jì)算 = ×(33+30+32+30+25)=30,
= ×(38+35+41+36+30)=36,
又 xiyi=5446, xi2=4538,
∴回歸系數(shù)為 = = = ,
= ﹣ =36﹣ ×30=﹣ ,
∴回歸方程為 = x﹣ ;
當(dāng)x=23時(shí), = ×23﹣ = ≈27.53,
即預(yù)測(cè)9月3日的用電量約為28萬(wàn)度;(結(jié)果保留整數(shù))
(2)解:根據(jù)題意知,ξ的可能取值為0,1,2;
且P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= = ,
所以ξ的概率分布列為
ξ | 0 | 1 | 2 |
P |
數(shù)學(xué)期望為E(ξ)=0× +1× +2× =1.2,
方差為D(ξ)=(0﹣1.2)2× +(1﹣1.2)2× +(2﹣1.2)2× =0.36
【解析】(1)計(jì)算 、 ,求出回歸系數(shù),寫(xiě)出回歸方程,利用回歸方程計(jì)算x=23時(shí) 的值即可;(2)根據(jù)題意知ξ的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出ξ的概率分布列,計(jì)算數(shù)學(xué)期望和方差.
【考點(diǎn)精析】利用離散型隨機(jī)變量及其分布列對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足an=3an﹣1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2;
(2)是否存在一個(gè)實(shí)數(shù)t,使得 ,且{bn}為等差數(shù)列?若存在,則求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B= ,△ABC的面積為9,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+3x對(duì)任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x∈ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(1,0)的直線l的參數(shù)方程是 (t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C點(diǎn)的極坐標(biāo)方程為ρ=﹣4sin(θ﹣ ).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)若直線l與曲線C交于兩點(diǎn)A、B,求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2 .
(Ⅰ)記 ,討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為一個(gè)等腰三角形形狀的空地,腰CA的長(zhǎng)為3(百米),底AB的長(zhǎng)為4(百米).現(xiàn)決定在空地內(nèi)筑一條筆直的小路EF(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長(zhǎng)相等、面積分別為S1和S2 .
(1)若小路一端E為AC的中點(diǎn),求此時(shí)小路的長(zhǎng)度;
(2)求 的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com