已知函數(shù)f(x)=ax3+bsinx+4(a,b∈R),f(lg(log23))=2,則f(lg( log32))=(  )
分析:易判l(wèi)g(log23)與lg(log32)互為相反數(shù),構(gòu)造函數(shù)f(x)=g(x)+4,即g(x)=ax3+bsinx,利用g(x)的奇偶性可求結(jié)果.
解答:解:∵lg(log23)+lg( log32)=lg(log23•log32)=lg1=0,
∴l(xiāng)g(log23)與lg(log32)互為相反數(shù),
令f(x)=g(x)+4,即g(x)=ax3+bsinx,易知g(x)為奇函數(shù),
則g(lg(log23))+g(lg( log32))=0,
∴f(lg(log23))+f(lg( log32))=g(lg(log23))+4+g(lg( log32))+4=8,
又f(lg(log23))=2,∴f(lg( log32))=6,
故選A.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的應(yīng)用,解決本題的關(guān)鍵細(xì)心觀察自變量的相反關(guān)系,然后靈活構(gòu)造函數(shù),借助函數(shù)的奇偶性求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案